Preface

Introduction

1.1. Background

1.2. Main assumptions

1.3. Key of the multi-scale approach: the internal actions, a new tensor concept

Notations

Chapter 1. Fundamentals: The Tensor Structures Induced by Contact Friction

1.1 Microscopic scale: the elementary inter-granular contact

1.1.1. Vector formulation of energy dissipation

1.1.2. Tensor formulation of energy dissipation

1.1.3. Physical significance – algebraic and geometrical representations

1.2. Mesoscopic scale: the discontinuous granular mass

1.2.1. Vector formulation of energy dissipation

1.2.2. Tensor aspects of energy dissipation

1.2.3. A key population effect in energy exchanges: the internal feedback interaction

1.2.4. The mesoscopic equation of energy dissipation by contact friction

1.2.5. Minimal dissipation and ordered structures

1.2.6. Maximal dissipation and disordered structures

1.2.7. General solutions of dissipation equation with $0 \leq R(A) \leq 1$ – some key properties and geometrical representation
1.2.8. Practical situations: theoretical and practical minimum dissipation rule ... 20
1.2.9. Practical situations: the apparent inter-granular friction 21
1.3. Macroscopic scale: the equivalent pseudo-continuum. 22
 1.3.1. Previous works on a tensor formulation of energy dissipation ... 22
 1.3.2. Correspondence between equivalent pseudo-continuum and discontinuous granular mass ... 23
 1.3.3. The macroscopic equation of energy dissipation by contact friction ... 25
 1.3.4. Coaxial situations: the six allowed strain modes and their physical meaning. ... 27

Chapter 2. Natural Compatibility With Mechanical Heterogeneity 31
 2.1. Compatibility with the heterogeneity of internal actions 32
 2.1.1. Discontinuous granular mass in motion near minimal dissipation ... 32
 2.1.2. Relationship on statistical distributions of contact action orientation ... 34
 2.1.3. Equivalent pseudo-continuum in motion near minimal dissipation ... 42
 2.1.4. Conclusions on the compatibility with the heterogeneity of internal actions ... 44
 2.2. Compatibility with the heterogeneity of internal forces and internal movement distributions (stress and strain rates) 46
 2.2.1. Case of coaxiality – compatibility with heterogeneity of stresses and strain rate distributions 47
 2.2.2. General situations near minimal dissipation 53
 2.2.3. Conclusions on heterogeneity of stresses and strain rates 57

Chapter 3. Strain Localization and Shear Banding: The Genesis of Failure Lines 59
 3.1. Background and framework of the analysis 59
 3.2. Shear bands orientation ... 61
 3.2.1. Constant volume motion (critical state) 61
 3.2.2. Variable volume motion ... 64
 3.3. Shear bands internal structure 66
 3.3.1. Kinematic stationary structures in shear bands 67
 3.3.2. Confrontation with key experimental results of Nemat-Nasser and Okada ... 69
 3.3.3. The dissipative microstructure inside of shear bands 72
 3.3.4. Consequences on the development of shear bands 76
6.1.2. Triaxial extension and cyclic triaxial 132
6.2. Validations from simple shear experimental results 133
6.3. Validations from true 3D compression apparatus results 135
6.4. Validation from cyclic torsional shear tests data 137
6.5. Validations from detailed numerical simulations with realistic discrete particles ... 139
6.6. Measurement of apparent inter-granular friction – typical values of the parameters .. 141

Chapter 7. Cyclic Compaction Under Alternate Shear Motion 145
7.1. Background and framework of the analysis 145
7.2. Key results ... 147
7.3. The cyclic compaction ratio versus the principal stress ratio 149
7.4. Energy efficiency of compaction 150
7.5. Limit of cyclic compaction when apparent inter-granular friction vanishes .. 151

Chapter 8. Geostatic Equilibrium: The K_0 Effect 153
8.1. Background and framework of the analysis 153
8.2. The micromechanical process of geostatic stress-building in the soil mass ... 155
8.3. The solutions provided by the multi-scale approach 156
8.4. The resulting K_0 formula based on micromechanics 158
8.5. Comparison with empirical Jaky formula 159
8.6. The two limits of geostatic equilibrium 160
8.7. Limit of geostatic equilibriums when apparent inter-granular friction vanishes ... 161

Chapter 9. Scale Effects in Macroscopic Behavior Due to Grain Breakage .. 163
9.1. Introduction to grain breakage phenomenon: a framework of the analysis ... 163
9.1.1. Elementary grain breakage ... 164
9.1.2. Statistical representations ... 165
9.1.3. Central trend in the statistics of mineral particle failures 166
9.2. Scale effects in shear strength .. 167
9.2.1. Shear strength of rockfill ... 167
9.2.2. Evidence of scale effect ... 168
9.2.3. Scale effect rule on shear strength envelope (failure criterion) . 171
Chapter 10. Practical Applications of Scale Effects to Design and Construction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1. A new method for rational assessment of rockfill shear strength envelope</td>
<td>176</td>
</tr>
<tr>
<td>10.2. Incidence of scale effects on rockfill slopes stability</td>
<td>178</td>
</tr>
<tr>
<td>10.2.1. The question of stability assessment</td>
<td>178</td>
</tr>
<tr>
<td>10.2.2. Explicit scale effect in safety factors</td>
<td>179</td>
</tr>
<tr>
<td>10.2.3. Scale effect compensation</td>
<td>182</td>
</tr>
<tr>
<td>10.3. Scale effects on deformation features and settlements</td>
<td>184</td>
</tr>
<tr>
<td>10.3.1. Scale effects on deformation features</td>
<td>184</td>
</tr>
<tr>
<td>10.3.2. Scale effects in rockfill apparent rigidity modulus</td>
<td>187</td>
</tr>
<tr>
<td>10.3.3. Scale effects in settlements</td>
<td>190</td>
</tr>
</tbody>
</table>

Chapter 11. Concluding Remarks

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1. Concluding remarks on features resulting from energy dissipation by friction</td>
<td>195</td>
</tr>
<tr>
<td>11.1.1. Tensor structures induced by contact friction on internal actions</td>
<td>196</td>
</tr>
<tr>
<td>11.1.2. Relevance of minimum dissipation rule</td>
<td>197</td>
</tr>
<tr>
<td>11.1.3. Compatibility with heterogeneity</td>
<td>198</td>
</tr>
<tr>
<td>11.1.4. Localization and shear banding</td>
<td>198</td>
</tr>
<tr>
<td>11.1.5. Failure criterion</td>
<td>199</td>
</tr>
<tr>
<td>11.1.6. Experimental validations</td>
<td>200</td>
</tr>
<tr>
<td>11.1.7. Coaxiality assumption in macroscopic properties</td>
<td>200</td>
</tr>
<tr>
<td>11.1.8. Tracks for further developments</td>
<td>201</td>
</tr>
<tr>
<td>11.2. Concluding remarks on features resulting from grain breakage</td>
<td>202</td>
</tr>
<tr>
<td>11.3. Final conclusions</td>
<td>203</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendices</td>
<td>205</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>267</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>275</td>
</tr>
</tbody>
</table>