Contents

Introduction .. xi
Denis LEMAÎTRE

Part 1. Innovation Design and Expectations toward Training 1

Chapter 1. From Technological Innovation to “Situated” Innovation: Improving the Adaptation of Engineering Training to the Societal Challenges of the 21st Century 3
Emmanuel CARDONA GIL, Linda GARDELLE and Brad TABAS

1.1. Progress and innovation 4
1.1.1. Progress and engineer training 5
1.1.2. Progress in crisis 6
1.2. Rethinking progress 8
1.2.1. The engineer, innovation and crisis in Progress ... 8
1.2.2. The technical and economic paradigm and innovator training .. 10
1.3. Rethinking innovation and the innovator 12
1.4. Training for a “situated” innovation 14
1.5. Conclusion .. 17
1.6. References ... 18

Chapter 2. Responding to an Event: Innovation of the Contemporary Engineer? ... 21
Frédéric HUET, Hugues CHOPLIN, Isabelle CAILLEAU and Pierre STEINER

2.1. From contemporary capitalism to innovation situations 22
2.1.1. The dynamics of contemporary capitalism .. 22
2.1.2. … to new situations of innovation 24
2.2. Innovating: a transaction or inventive response? 28
2.2.1. Exploiting events: two possible interpretations 28
Chapter 3. Innovation within Companies: Changes and Impacts on Our Student Engineer Training Models

Christiane GILLET and Klara KÖVESI

3.1. Introduction .. 39
3.2. The transformation of innovation within contemporary companies 40
 3.2.1. Nature and purpose of innovation 41
 3.2.2. The organization of innovation 45
3.3. The impact of the new forms of innovation design on the training of engineers ... 50
 3.3.1. Managerial aspect of the innovation process 51
 3.3.2. The functional aspect of the innovation process 54
3.4. Conclusion ... 57
3.5. References ... 58

Chapter 4. Skills and Competencies for Innovators: New Priorities and Requirements for Engineering Graduates

Klara KÖVESI and Péter CSIZMADIA

4.1. Introduction .. 63
4.2. Which skills and competencies are needed for innovation? 65
 4.2.1. Toward a holistic vision of engineers 65
 4.2.2. Emergence of industry requirements 67
4.3. Industry perception of graduate engineering students 73
 4.3.1. Technical competencies 74
 4.3.2. Non-technical skills and competencies 76
4.4. Conclusion .. 80
4.5. References .. 82

Part 2. New Skills and Adaptation to Training Systems

Chapter 5. The Training of Innovators between Skill Acquisition and Construction of an Individual Socioprofessional Identity

Tiphaine LIU

5.1. Introduction .. 87
5.2. What is innovation? Who are the innovators? 88
5.3. The two paths for innovation training in professional education 92
5.4. Applied study of the training programs to the innovation of engineering schools 95
 5.4.1. Training in innovation management 95
 5.4.2. Research training on innovation 96
 5.4.3. Training regarding the manufacture of new products or services 97
 5.4.4. Professional training oriented toward the emergence of the innovator identity 98
5.5. What innovation training should be integrated in an engineering school? 100
 5.5.1. Emancipation promotes engagement in learning 102
 5.5.2. Importance of creating an environment rather than a semiclosed method (type of school) 102
 5.5.3. The burden of the transformation identity by action is supported by a collective 102
5.6. Conclusion 103
5.7. References 104

Anne-Marie JOLLY and Julie NOLLAND
 6.1. Introduction 107
 6.2. Study context: CTI and engineering higher education institutions 108
 6.3. Expectations regarding entrepreneurship and innovation 109
 6.4. Investigation conducted within engineering higher education institutions (called “Focus”) 113
 6.5. Answers from the institutions 116
 6.6. Pedagogical organization 117
 6.7. Resources implemented and external partnerships 120
 6.8. Conclusion 121
 6.9. References 122

Chapter 7. Determinants of Skill Matching among Young Hungarian Engineers 125
Péter CSIZMADIA and Zsuzsanna VEROSZTA
 7.1. Introduction 125
 7.2. Theoretical background 126
 7.3. Research question 130
 7.3.1. Effect of academic performance 131
 7.3.2. Effect of labor market involvement 131
 7.3.3. Effect of educational background 132
Part 3. Pedagogies of Innovation

Chapter 8. Swimming with Sharks without Being Eaten: How Engineering Students can Learn Creativity, Entrepreneurial Thinking and Innovation
Claudius TERKOWSKY, Tobias HAERTEL, Anna-Lena ROSE, Liudvika LEISYTE and Dominik MAY

8.1. Introduction ... 147
8.2. Basic considerations regarding entrepreneurship and creativity 151
 8.2.1. Entrepreneurship in higher engineering education 151
 8.2.2. Contemporary concepts of engineering creativity 152
 8.2.3. Deploying creativity techniques 153
 8.2.4. Unleashing the courage to create by practicing breaching experiments ... 155
8.3. The Shark Tank Experience tutorial 155
 8.3.1. Intended learning objectives and learning activities 157
 8.3.2. Grading considerations 159
8.4. Data collection, data analysis and methods reflection 160
8.5. Results .. 161
 8.5.1. Developing, presenting and defending a pitch 161
 8.5.2. Do something unusual! 165
 8.5.3. Formative evaluation 166
8.6. Discussion .. 166
8.7. Prospective work .. 170
8.8. Conclusion ... 170
8.9. Acknowledgments ... 171
8.10. References ... 172

Chapter 9. Engaging with Heritage to Promote Innovative Thinking in Engineering Management Education
Jane ANDREWS and Robin CLARK

9.1. Introduction ... 178
9.2. Background: the importance of engineering education 179
9.3. Synergetic configuration: an innovative approach to engineering education ... 181
9.3.1. Heritage, innovation and project management:
the learning and teaching context 183
9.3.2. The P' Project: methodology 185
9.3.3. Innovating pedagogy and practice:
the P' Project study findings 187
9.4. Moving forward: the application of R9S
to achieve synergetic configuration and student success 192
9.5. Conclusion .. 194
9.6. References .. 195

Chapter 10. How Do Graduate Engineering Schools Train for
Innovation? Study of the Curricula of Three French Schools 199
Denis LEMAÎTRE and Christophe MORACE

10.1. Introduction ... 199
10.2. The adaptation of French engineering schools to innovation 200
10.2.1. The sociohistorical context 200
10.2.2. The conceptions of innovation beginning
with curricular changes ... 202
10.2.3. Forms of pedagogical innovation 204
10.3. Three innovation training methods 208
10.3.1. Case studies of three engineering schools 208
10.3.2. Presentation of the three schools 209
10.3.3. Three training methods dedicated to innovation 211
10.4. Innovation training teaching methods and logic 214
10.4.1. Three divergent approaches to innovation training 214
10.4.2. The logic at work in innovation training 216
10.4.3. The challenges of a global approach to innovation 220
10.5. Conclusion .. 221
10.6. References .. 223

Chapter 11. Developing Methods and Programs for
Teaching Innovation to Engineers: Toward Eco-Innovation? 225
Catherine ADAM and Serge COCO

11.1. Introduction .. 225
11.2. A conception of sociotechnical innovation education......... 226
11.2.1. A holistic approach .. 226
11.2.2. A systemic conception: toward eco-innovation? 228
11.3. Modeling a system for training innovators:
an empirical-inductive approach 229
11.3.1. A heuristic approach .. 229
11.3.2. A case study illustrating the need for interdisciplinarity 229
11.4. The mobilization of HSS within an existing program 233
11.4.1. Creating transversality by opening up the disciplines 234
11.4.2. Mobilizing HSS to establish particular skills 237
11.5. Conclusion . 240
11.6. References . 240

Conclusion . 243
André GRELON

List of Authors . 253

Index . 257