Table of Contents

Notations ... xiii
Introduction .. xxvii
Part 1. Getting Started 1

Chapter 1. A Primer to Flooding, Razing and Watersheds .. 3

1.1. Topographic reliefs and topographic features ... 3
 1.1.1. Images seen as topographic reliefs and inversely .. 3
 1.1.2. Topographic features ... 5
 1.1.3. Modeling a topographic relief as a weighted graph .. 8
1.2. Flooding, razing and morphological filters ... 10
 1.2.1. The principle of duality ... 10
 1.2.2. Dominated flooding and razing ... 10
 1.2.3. Flooding, razing and catchment zones of a topographic relief ... 16
1.3. Catchment zones of flooded surfaces ... 18
 1.3.1. Filtering and segmenting ... 18
 1.3.2. Reducing the oversegmentation with markers ... 19
1.4. The waterfall hierarchy ... 26
 1.4.1. Overflows between catchment basins ... 26
1.5. Size-driven hierarchies ... 28
1.6. Separating overlapping particles in n dimensions ... 31
1.7. Catchment zones and lakes of region neighborhood graphs ... 33
1.8. Conclusion ... 37
<table>
<thead>
<tr>
<th>Chapter 2. Watersheds and Flooding: a Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golden Braid</td>
</tr>
<tr>
<td>2.1. Watersheds, offsprings and parallel branches</td>
</tr>
<tr>
<td>2.2. Flooding and connected operators</td>
</tr>
<tr>
<td>2.3. Connected operators and hierarchies</td>
</tr>
<tr>
<td>2.4. Hierarchical segmentation: extinction values</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3. Mathematical Notions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Summary of the chapter</td>
</tr>
<tr>
<td>3.2. Complete lattices</td>
</tr>
<tr>
<td>3.2.1. Partial order and partially ordered sets</td>
</tr>
<tr>
<td>3.2.2. Upper and lower bounds</td>
</tr>
<tr>
<td>3.2.3. Complete lattices</td>
</tr>
<tr>
<td>3.2.4. Dyadic relations on a complete lattice</td>
</tr>
<tr>
<td>3.3. Operators between complete lattices</td>
</tr>
<tr>
<td>3.3.1. Definition of an operator</td>
</tr>
<tr>
<td>3.3.2. Properties of the operators</td>
</tr>
<tr>
<td>3.3.3. Erosion and dilation</td>
</tr>
<tr>
<td>3.3.4. Opening and closing</td>
</tr>
<tr>
<td>3.4. The adjunction: a cornerstone of mathematical morphology</td>
</tr>
<tr>
<td>3.4.1. Adjoint erosions and dilations</td>
</tr>
<tr>
<td>3.4.2. Increasingness</td>
</tr>
<tr>
<td>3.4.3. Unicity</td>
</tr>
<tr>
<td>3.4.4. Composition</td>
</tr>
<tr>
<td>3.4.5. Dual operators</td>
</tr>
<tr>
<td>3.5. Openings and closings</td>
</tr>
<tr>
<td>3.5.1. Definitions</td>
</tr>
<tr>
<td>3.5.2. Elements with the same erosion or the same dilation</td>
</tr>
<tr>
<td>3.5.3. The invariants of an opening or a closing</td>
</tr>
<tr>
<td>3.6. Complete lattices of functions</td>
</tr>
<tr>
<td>3.6.1. Definitions</td>
</tr>
<tr>
<td>3.6.2. Infimum and supremum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 2. The Topography of Weighted Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 4. Weighted Graphs</td>
</tr>
<tr>
<td>4.1. Summary of the chapter</td>
</tr>
<tr>
<td>4.2. Reminders on graphs</td>
</tr>
<tr>
<td>4.2.1. Directed and undirected graphs</td>
</tr>
<tr>
<td>4.3. Weight distributions on the nodes or edges of a graph</td>
</tr>
</tbody>
</table>
4.3.1. Duality ... 63
4.3.2. Erosions and dilations, openings, closings 63
4.3.3. Labels ... 66
4.4. Exploring the topography of graphs by following a drop of water ... 66
4.5. Node-weighted graphs 67
4.5.1. Flat zones and regional minima 67
4.5.2. Flowing paths and catchment zones 67
4.6. Edge-weighted graphs 69
4.6.1. Flat zones and regional minima 69
4.6.2. Flowing paths and catchment zones 69
4.6.3. Even zones and regional minima 71
4.7. Comparing the topography of node-weighted graphs and edge-weighted graphs 72

Chapter 5. Flowing Graphs 73
5.1. Summary of the chapter 73
5.2. Towards a convergence between node- and edge-weighted graphs 74
5.2.1. The flowing edges in a node-weighted graph $G(\nu, nil)$ 74
5.2.2. The flowing edges in an edge-weighted graph $G(nil, \eta)$ 75
5.2.3. Flowing graphs 76
5.3. The flowing adjunction 76
5.4. Flowing edges under closer scrutiny 77
5.4.1. Relations between the flowing edges of $G(\nu, nil)$ and $G(nil, \delta_{en}\nu)$ 77
5.4.2. Relations between the flowing edges of $G(nil, \eta)$ and $G(\varepsilon_{en}\eta, nil)$ 78
5.4.3. Chaining the inclusions between flowing edges 78
5.4.4. Criteria characterizing flowing graphs 79
5.4.5. Transforming a node- or edge-weighted graph into a flowing graph 81
5.4.6. The invariance domains of γ_e and φ_n 83
5.4.7. Particular flowing graphs 87
5.5. Illustration as a hydrographic model 88
5.5.1. A hydrographic model of tanks and pipes 88
5.5.2. Associating an “edge unstable” tank network with an arbitrary node-weighted graph $G(\nu, nil)$ 90
5.5.3. Associating a “node unstable” tank network with an arbitrary edge-weighted graph $G(nil, \eta)$ 91
5.5.4. Chaining the operations 92
8.2. The pruning operator .. 138
 8.2.1. Two operators on flow digraphs 139
 8.2.2. Pruning by concatenating both operators 140
 8.2.3. Properties of pruning .. 142
 8.2.4. A variant of pruning .. 146
 8.2.5. Local pruning .. 146
8.3. Evolution of catchment zones with pruning 147
 8.3.1. Analyzing a digital elevation model 148

Chapter 9. Constructing an ∞-steep Digraph
by Flooding ... 155
 9.1. Summary of the chapter .. 155
 9.2. Characterization of ∞ - $steep$ graphs 156
 9.3. The core-expanding flooding algorithm 156
 9.3.1. The first version of the core-expanding algorithm . 157
 9.3.2. The second version of the core-expanding algorithm . 160
 9.3.3. The third version of the core-expanding algorithm . 164
 9.3.4. The last version of the core-expanding algorithm,
 constructing a partial ∞ - $steep$ flowing graph . 167

Chapter 10. Creating Steep Watershed Partitions 169
 10.1. Summary of the chapter 169
 10.2. Creating watershed partitions with the core-expanding
 algorithm ... 169
 10.2.1. Illustration of the HQ algorithm applied to
 node-weighted graphs 171
 10.3. Propagating labels while pruning the digraph 172
 10.3.1. Constructing a watershed partition during
 pruning .. 173
 10.4. Pruning or flooding: two ways for catchment
 zones to grow .. 176

Chapter 11. An Historical Intermezzo 179
 11.1. Watersheds: the early days 179
 11.1.1. The level-by-level construction of watersheds 180
 11.1.2. A hierarchical queue watershed algorithm 181
 11.2. A watershed as the SKIZ for the topographic distance . 181
 11.2.1. The topographic distance 181
 11.3. Convergence into a unique algorithm of three
 research streams ... 182
 11.3.1. Three formulations of watershed partitions,
 one algorithm ... 182
 11.3.2. Discussion .. 183
Part 4. Segmenting with Dead Leaves Partitions 185

Chapter 12. Intermezzo: Encoding the Digraph Associated with an Image 187

 12.1. Summary of the theoretical developments seen so far 187
 12.2. Summary of the chapter 188
 12.3. Representing a node-weighted digraph as two images 188
 12.3.1. The encoding of the digraph associated with an image 188
 12.3.2. Operators acting on node-weighted digraphs 190
 12.4. Defining labels ... 192
 12.4.1. Operators on unweighted unlabeled digraphs 193
 12.4.2. Operators on labeled unweighted digraphs 194
 12.4.3. Operators on weighted and labeled digraphs 198

Chapter 13. Two Paradigms for Creating a Partition or a Partial Partition on a Graph 203

 13.1. Summary of the chapter 203
 13.2. Setting up a common stage for node- and edge-weighted graphs 203
 13.3. A brief tool inventory 204
 13.3.1. Operators making no use of the node weights 204
 13.3.2. Operators propagating labels 204
 13.3.3. Operators making use of the node weights and the graph structure 205
 13.4. Dead leaves tessellations versus tilings: two paradigms 205
 13.5. Extracting catchment zones containing a particular node 206
 13.5.1. Core expansion versus pruning algorithms 206
 13.5.2. Illustration of the pruning algorithm 207
 13.6. Catchment zones versus catchment basins 209

Chapter 14. Dead Leaves Segmentation 211

 14.1. Summary of the chapter 211
 14.2. Segmenting with a watershed 211
 14.2.1. Segmenting with watershed partitions 211
 14.2.2. A crossroad of several methods 213
 14.3. The evolution of a dead leaves tessellation with pruning 214
 14.4. Local correction of overlapping zones 217
 14.4.1. Pruning analysis 217
 14.4.2. Local pruning for reducing overlapping zones 219
14.4.3. A local core-expanding algorithm for reducing overlapping zones 221
14.5. Local correction of the overlapping zones on a DEM ... 221
14.5.1. Local core-expanding algorithm for reducing overlapping zones 225
14.5.2. Advantage of the two-step construction of a dead leaves tessellation 227
14.6. Segmentation of some marked regions ... 231
14.6.1. Segmenting the domain and extracting the objects of interest .. 232
14.6.2. Extraction of the marked catchment zones and local correction of errors 233

Chapter 15. Propagating Segmentations .. 241

15.1. Summary of the chapter ... 241
15.2. Step-by-step segmentation ... 241
15.2.1. Principle of the method .. 241
15.2.2. Segmentation of blood cells ... 242
15.2.3. Segmentation of an electronic circuit ... 243
15.3. Marker-based segmentation .. 245

Appendix ... 247

References .. 259

Index .. 267