Contents

Introduction .. xi

Chapter 1. The Thermal Worm Model to Represent Entropy–Exergy Duality ... 1

1.1. A fractal and diffusive approach to entropy and exergy 1
 1.1.1. The filamentary thermal worm model of exergy 1
 1.1.2. The geometrical Carnot factor and the temperature of a filamentary worm ... 3
 1.1.3. The T-like filamentary worm 6
1.2. A granular model of energy: toward the entropy and the exergy of a curve ... 7
 1.2.1. The model of granular energy: the concept of ergon 7
 1.2.2. Exergy and anergy of an ergon: the entropic angle of an energy ... 7
 1.2.3. An elementary ergon discharged in a field of temperature T: the thermal puff time of energy 9
 1.2.4. The granular energy model applied to the hydraulic analogy of Lazare and Sadi Carnot: entropy and action of energy 11
 1.2.5. Exergy and anergy of a curve 15
 1.2.6. Examples of Carnot factor of some curves 18
1.3. The thermal worm model of entropy–exergy duality 19
 1.3.1. Entropic skins to describe irreversibilities and entropy–exergy duality ... 19
 1.3.2. The 2D worm model .. 21
 1.3.3. The 3D worm model: the coefficient of entropic dispersion 22
 1.3.4. Entropic structure of a steady-state heat flux 23
 1.3.5. 2D worm entropic dispersion of a steady heat flux 24
 1.3.6. 3D worm entropic dispersion of a steady heat flux 25
1.4. The 2D worm model .. 26
 1.4.1. The isothermal 2D worm ... 26
1.4.2. Exergy destruction between two 2D worms 27
1.4.3. The non-isothermal 2D worm ... 28
1.4.4. The 2D worm of a linear profile of temperature: method 1 31
1.4.5. 2D worm displaying a linear temperature profile: method 2 35
1.5. The 3D thermal worm-like model .. 36
1.5.1. The isothermal 3D worm model .. 36
1.5.2. The entropic angle of energy ... 39
1.5.3. The non-isothermal 3D worm model 40
1.5.4. Table to recapitulate .. 43
1.5.5. A link with the phenomenon of intermittency in fully developed turbulence ... 44
1.5.6. Longitudinal diffusion and lateral diffusion in the worm-like model ... 46

Chapter 2. Black Hole Entropy and the Thermal Worm Model 49

2.1. Entropy of a black hole: the Bekenstein–Hawking temperature 49
2.1.1. Introduction: a geometric entropy for black holes 49
2.1.2. Gravitational and quantum diffusivities: longitudinal and lateral diffusivities of a black hole? 52
2.1.3. The existence of an absolute minimum temperature which is not 0 ... 54
2.2. The thermal worm model of black holes 56
2.2.1. Entropic thermal worm representation of a black hole 56
2.2.2. Temperature of the worm and temperature of the black hole 58
2.2.3. The thickness of the horizon of a black hole 59
2.2.4. The quantum variation of the temperature in a black hole 60
2.3. Carnot representation of black holes .. 62
2.3.1. Black hole as a reversible power cycle 62
2.3.2. Black hole as a reversible refrigeration cycle 62
2.3.3. The quantum interaction velocity 63
2.3.4. Relaxation time of thermal inhomogeneities: the “thermal puff time” of energy in a black hole 65
2.3.5. From Planck’s constant and Boltzmann’s constant toward Brillouin’s constant $b = h/k$ 67
2.3.6. Black hole physics: a deep and fascinating representation of the finiteness of our world 68

3.1. Intermittency of black-body radiation 71
3.1.1. Black-body radiation: Wien’s law, Rayleigh–Jeans’ law and Planck’s law ... 71
3.1.2. The spectral volume fraction and the intermittency of radiation 73
3.1.3. A simple derivation of $u(\nu) = \frac{8\pi \nu^2}{c^2} E_\nu$, using an analogy with fully developed turbulence .. 75
3.1.4. A simple understanding of the importance of the ratio ν/T in the black-body problem .. 76
3.1.5. The interacting length and interaction time of a photon and its scale-entropy ... 77
3.1.6. The interacting length of a fermion and its scale-entropy 81
3.1.7. Summary of the chapter ... 82
3.2. Generalized RJ law based on a scale-dependent fractal geometry 82
3.2.1. Radiation as stationary waves in a box: the Rayleigh description ... 83
3.2.2. First case: uniform distribution of modes in phase-space – the RJ theory .. 84
3.2.3. Second case: fractal distribution of modes in phase space 86
3.2.4. General case: the fractal dimension is mode dependent 87
3.2.5. Conclusion ... 88
3.3. Fluctuations and energy dispersion in black-body radiation 88
3.3.1. Planck’s derivation using the second-order derivative of entropy: the “lucky guess” ... 88
3.3.2. Planck’s entropy .. 91
3.3.3. Planck’s entropy, Planck’s counting of complexions and Boltzmann’s theory .. 93
3.3.4. Planck’s entropy and the scale-entropy of a radiative field 97
3.3.5. Equivalent chemical potential of a Boltzmann distribution 99
3.3.6. Graphical method to represent Boltzmann’s counting 100
3.3.7. What is the fundamental status of the second order derivative of entropy relative to energy? Variance and the dispersion factor of radiative energy 103
3.3.8. The fluctuations and the dispersion of energy 108
3.3.9. The dispersion factor interpreted by the worm model 111
3.3.10. An heuristic thermodynamical uncertainty relation from the thermal worm model ... 112
3.4. A scale-entropy diffusion equation for black-body radiation 114
3.4.1. Spacions and scale-entropy .. 114
3.4.2. Scale-entropy diffusion equation .. 116
3.4.3. Pure truncated fractal case and parabolic scaling 119
3.4.4. Exponential scaling: the scale-entropy sink is a fraction of the entropy production of a photon 119
3.4.5. Summary ... 122
3.5. Spectral fractal dimensions and scale-entropy of black-body radiation .. 122
Chapter 4. Non-extensive Thermodynamics, Fractal Geometry and Scale-entropy

4.1. Tsallis entropy in non-extensive thermostatistics
4.2. Two physical systems leading to Tsallis entropy:
 - Work produced by the isothermal growth of a fractal volume
 - Mass decay of a fractal system
4.3. Non-extensive thermostatistics, scale-dependent fractality and Kaniadakis entropy
 - Decaying process of a fractal system submitted to internal cohesion pressure
 - The Kaniadakis κ-statistics and Kaniadakis entropy
4.3.3. Conclusion on non-extensive thermodynamics and fractal geometry and scale-entropy

Chapter 5. Finite Physical Dimensions Thermodynamics

5.1. A brief history of finite physical dimensions thermodynamics
5.2. Transfer phenomena by FPDT
 - Series model of insulation: thermal resistances in series
 - Parallel model of insulation: thermal resistances in parallel
5.2.3. Generalization
5.2.4. Partial conclusion
5.3. Energy conversion by FPDT
 - Carnot cycle and thermodynamics of equilibrium
 - The non-adiabatic endoreversible Carnot engine
 - The adiabatic endoreversible Carnot engine
 - The adiabatic non-reversible Carnot engine
 - The non-reversible Carnot engine with thermal losses
5.3.6. Generalization of previous results
5.4. Extension to complex systems: cascades of endoreversible Carnot engines
 - Cascade of power Carnot engines
5.4.2. Thermodynamic model in finite dimensions 170
5.4.3. Optimization of the cascade ... 171
5.4.4. Cascade with N endoreversible machines 173
5.5. Time dynamics of Carnot engines .. 174
5.5.1. Reversible thermal transfer between source and sink 174
5.5.2. Finite transfer between source and irreversible engine 176
5.6. Conclusions on FPDT .. 179

Chapter 6. A Scale-Dependent Fractal and Intermittent Structure to Describe Chemical Potential and Matter Diffusion 181

6.1. Defining and quantifying the diffusion of matter through chemical potential ... 181
6.1.1. The chemical potential .. 181
6.1.2. Fundamental equations .. 183
6.1.3. Condition of chemical equilibrium 184
6.2. Topic scales and scale-entropy of a set of particles 186
6.2.1. Topic volume and topic scales of a particle 186
6.2.2. Scale-entropy of a set of particles 188
6.2.3. Scale-entropy of a fractal set .. 190
6.3. Entropy and chemical potential of an ideal gas by Sackur–Tetrode theory ... 192
6.3.1. Entropy of monoatomic ideal gases using Sackur–Tetrode theory ... 192
6.3.2. Chemical potential using Sackur–Tetrode theory 195
6.3.3. Chemical potential of a mixture using Sackur–Tetrode theory .. 196
6.4. Entropy of a set of particles described through topic scales and scale-entropy ... 198
6.4.1. Waving and clustering entropies of a set of particles 198
6.4.2. Application to a two-component mixture: the clustering entropy of a mixture ... 200
6.4.3. Application to heterogeneous solids: clustering entropy of heterogeneity ... 203
6.5. Fractal and scale-dependent fractal geometries to interpret and calculate the chemical potential ... 204
6.5.1. Chemical potential interpreted via scale-entropy, expelling potential and clustering entropy ... 204
6.5.2. Intermittent and multiscale nature of chemical potential: the fractal case ... 205
6.6. The intermittency parameter and clustering entropy of particles in the fractal case ... 206
6.6.1. Clustering entropy of a single i-particle belonging to a fractal set of particles ... 206
6.6.2. Clustering entropy for the whole ith component (fractal case) .. 208