Table of Contents

PART 1. CONSTRAINT PROGRAMMING AND FOUNDATIONS OF GRAPH THEORY .. 1

Introduction to Part 1 .. 3

Chapter 1. Introduction to Constraint Programming ... 5

 1.1. What is a variable? .. 7
 1.2. What is a constraint? 8
 1.3. What is a global constraint? 10
 1.4. What is a propagation algorithm? 11
 1.5. What is a consistency level? 14
 1.6. What is a constraint solver? 15
 1.7. Constraint solvers at work 17
 1.7.1. Importance of modeling 17
 1.7.2. Importance of heuristics in guiding research ... 20
 1.7.3. Importance of using global constraints 21
 1.8. Organization structure 21

Chapter 2. Graph Theory and Constraint Programming ... 23

 2.1. Modeling graphs with constraint programming 24
Chapter 3. Tree Graph Partitioning

3.1. In undirected graphs 39
3.2. In directed graphs 42

PART 2. CHARACTERIZATION OF TREE-BASED
GRAPH PARTITIONING CONSTRAINTS 47

Chapter 4. Tree Constraints in Undirected
Graphs ... 49

4.1. Decomposition 49
4.2. Definition of constraints 51
4.3. A filtering algorithm for the proper-forest
constraint ... 56
4.3.1. A solution for the proper-forest
constraint ... 57
4.3.2. Hybrid-consistency for the proper-forest
constraint ... 59
4.3.3. Correction and completion 61
4.3.4. Complexity 64
4.4. Filtering algorithm for the resource-forest
constraint ... 70
4.4.1. Existence of a solution for the
resource-forest constraint 70
4.4.2. Hybrid-consistency for the resource-forest
constraint ... 72
4.4.3. Correction and completion 73
4.4.4. Complexity 79
4.5. Summary of undirected tree constraints 80

Chapter 5. Tree Constraints in Directed Graphs 83

5.1. Decomposition 83
5.2. Definition of constraints 86
5.3. Filtering algorithm for the tree constraint ... 89
 5.3.1. Existence of a solution for a tree constraint 89
 5.3.2. General arc-consistency for the tree constraint 91
 5.3.3. Correction and completion 93
 5.3.4. Complexity 96
5.4. Filtering algorithm for the proper-tree constraint 96
 5.4.1. Limits on the number of proper trees 99
 5.4.2. Existence of a solution for the proper-tree constraint 103
 5.4.3. Filtering algorithm for the proper-tree constraint 104
 5.4.4. Correction 109
 5.4.5. Complexity 112
5.5. Summary of tree constraints in directed and undirected graphs 113

Chapter 6. Additional Constraints Linked to Graph Partitioning 117

6.1. Definition of restrictions 118
6.2. Complexity zoo 123
 6.2.1. Proper trees 124
 6.2.2. Precedence constraints 124
 6.2.3. Conditional precedence constraints 126
 6.2.4. Constraints on the interior half-degree of vertices...................... 127
6.2.5. Incomparability constraints 128
6.3. Interaction between the number of trees and
the number of proper trees 129
6.4. Relation of precedence between the vertices of
the graph 130
 6.4.1. Limitations on the maximum number of
trees 131
 6.4.2. Filtering linked to a set of precedence
constraints 132
 6.4.3. Filtering and complexity algorithm 134
6.5. Relation of conditional precedence 137
 6.5.1. Filtering linked to a conditional
precedence set 138
 6.5.2. Algorithmic and complexity 139
6.6. Relation of incomparability between graph
vertices 140
 6.6.1. Filtering linked to incomparability
constraints 141
 6.6.2. Filtering and complexity algorithm 142
6.7. Interactions between precedence and
incomparability constraints 143
 6.7.1. Improving filtering via interactions ... 143
 6.7.2. Deduction of new precedence
constraints 146
6.8. Constraining the interior half-degree of each
vertex 148
6.9. Summary 151

Chapter 7. The Case of Disjoint Paths 153

7.1. Minimum number of paths in acyclic directed
graphs 156
7.2. Minimum number of paths in any directed
graph 161
 7.2.1. Estimating the number of paths
partitioning a CFC 164
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.2.</td>
<td>Estimating the number of paths between two CFCs</td>
<td>167</td>
</tr>
<tr>
<td>7.3.</td>
<td>A path partitioning constraint</td>
<td>169</td>
</tr>
<tr>
<td>7.4.</td>
<td>Summary</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Chapter 8. Implementation of a Tree Constraint</td>
<td>175</td>
</tr>
<tr>
<td>8.1.</td>
<td>Original implementation</td>
<td>176</td>
</tr>
<tr>
<td>8.1.1.</td>
<td>The tree constraint</td>
<td>176</td>
</tr>
<tr>
<td>8.1.2.</td>
<td>The extended-tree constraint</td>
<td>179</td>
</tr>
<tr>
<td>8.1.3.</td>
<td>Limitations of the approach: illustration using the tree constraint</td>
<td>180</td>
</tr>
<tr>
<td>8.2.</td>
<td>Toward a “portable” implementation</td>
<td>181</td>
</tr>
<tr>
<td>8.2.1.</td>
<td>Implementation</td>
<td>183</td>
</tr>
<tr>
<td>8.2.2.</td>
<td>Bench mark</td>
<td>185</td>
</tr>
<tr>
<td>8.2.2.1.</td>
<td>Historic implementation versus adaptable implementation</td>
<td>186</td>
</tr>
<tr>
<td>8.2.2.2.</td>
<td>Evaluation of portability</td>
<td>189</td>
</tr>
<tr>
<td>8.3.</td>
<td>Conclusion</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>PART 3. IMPLEMENTATION: TASK PLANNING</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Introduction to Part 3</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Chapter 9. First Model in Constraint Programming</td>
<td>199</td>
</tr>
<tr>
<td>9.1.</td>
<td>Model for the coherence of displacements in space</td>
<td>199</td>
</tr>
<tr>
<td>9.2.</td>
<td>Modeling resource consumption</td>
<td>200</td>
</tr>
<tr>
<td>9.3.</td>
<td>Modeling time windows</td>
<td>201</td>
</tr>
<tr>
<td>9.4.</td>
<td>Modeling coordination constraints between units</td>
<td>202</td>
</tr>
<tr>
<td>9.5.</td>
<td>Limitations of the proposed model</td>
<td>203</td>
</tr>
</tbody>
</table>
Chapter 10. Advanced Model in Constraint Programming ... 205

10.1. Modeling the coherence of displacements in space .. 206
10.2. Modeling resource consumption ... 208
10.3. Integration of temporal aspects ... 208
10.4. Propagating time windows ... 213
 10.4.1. Interaction with the graph to be partitioned .. 213
 10.4.2. Interaction with the precedence graph .. 215
 10.4.3. Deriving impossible paths ... 217
 10.4.4. Interaction with the original tree constraint 219
 10.4.5. Complexity .. 219
 10.4.6. Integration into the mission planning model 222

Part 4. CONCLUSION AND FUTURE WORK .. 225

Chapter 11. Conclusion ... 227

Chapter 12. Perspectives and Criticisms ... 231

Bibliography .. 233

Index .. 239