Contents

Foreword by J.-F. Aubry .. ix
Foreword by L. Portinale xiii
Acknowledgments ... xv
Introduction .. xvii

Part 1. Bayesian Networks 1

Chapter 1. Bayesian Networks: a Modeling Formalism for System Dependability 3

1.1. Probabilistic graphical models: BN 5
 1.1.1. BN: a formalism to model dependability 5
 1.1.2. Inference mechanism 7
1.2. Reliability and joint probability distributions 8
 1.2.1. Multi-state system example 8
 1.2.2. Joint distribution 9
 1.2.3. Reliability computing 9
 1.2.4. Factorization 10
1.3. Discussion and conclusion 14
Chapter 2. Bayesian Network: Modeling Formalism of the Structure Function of Boolean Systems

2.1. Introduction .. 17
2.2. BN models in the Boolean case 19
 2.2.1. BN model from cut-sets 20
 2.2.2. BN model from tie-sets 23
 2.2.3. BN model from a top-down approach 25
 2.2.4. BN model of a bowtie 26
2.3. Standard Boolean gates CPT 29
2.4. Non-deterministic CPT 31
2.5. Industrial applications 38
2.6. Conclusion .. 41

Chapter 3. Bayesian Network: Modeling Formalism of the Structure Function of Multi-State Systems

3.1. Introduction .. 43
3.2. BN models in the multi-state case 43
 3.2.1. BN model of multi-state systems
 from tie-sets 44
 3.2.2. BN model of multi-state systems
 from cut-sets 49
 3.2.3. BN model of multi-state systems from
 functional and dysfunctional analysis 52
3.3. Non-deterministic CPT 58
3.4. Industrial applications 59
3.5. Conclusion .. 62

Part 2. Dynamic Bayesian Networks 65

Chapter 4. Dynamic Bayesian Networks: Integrating Environmental and Operating Constraints in Reliability Computation 67

4.1. Introduction .. 67
4.2. Component modeled by a DBN 69
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1. DBN model of a MC</td>
<td>70</td>
</tr>
<tr>
<td>4.2.2. DBN model of non-homogeneous MC</td>
<td>71</td>
</tr>
<tr>
<td>4.2.3. Stochastic process with exogenous constraint</td>
<td>72</td>
</tr>
<tr>
<td>4.3. Model of a dynamic multi-state system</td>
<td>75</td>
</tr>
<tr>
<td>4.4. Discussion on dependent processes</td>
<td>79</td>
</tr>
<tr>
<td>4.5. Conclusion</td>
<td>81</td>
</tr>
</tbody>
</table>

Chapter 5. Dynamic Bayesian Networks: Integrating Reliability Computation in the Control System

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Introduction</td>
<td>83</td>
</tr>
<tr>
<td>5.2. Integrating reliability information into the control</td>
<td>84</td>
</tr>
<tr>
<td>5.3. Control integrating reliability modeled by DBN</td>
<td>85</td>
</tr>
<tr>
<td>5.3.1. Modeling and controlling an over-actuated system</td>
<td>86</td>
</tr>
<tr>
<td>5.3.2. Integrating reliability</td>
<td>88</td>
</tr>
<tr>
<td>5.4. Application to a drinking water network</td>
<td>90</td>
</tr>
<tr>
<td>5.4.1. DBN modeling</td>
<td>91</td>
</tr>
<tr>
<td>5.4.2. Results and discussion</td>
<td>92</td>
</tr>
<tr>
<td>5.5. Conclusion</td>
<td>95</td>
</tr>
<tr>
<td>5.6. Acknowledgments</td>
<td>96</td>
</tr>
</tbody>
</table>

Conclusion | 97 |

Bibliography | 101 |

Index | 113 |