Table of Contents

- **Foreword 1** – P. Courtier .. 1
- **Avant-Propos 1** – P. Courtier ... 3
- **Foreword 2** – J. Roudier .. 5
- **Avant-Propos 2** – J. Roudier ... 7
- **Preface** – B. Jacob ... 9
- **Préface** – B. Jacob ... 12
- **International Forum for Road Transport Technology** 15
- **International Society for Weigh-in-Motion** 17
- **Panel Discussion** .. 19
- **Plenary Session** .. 23
 - Weigh-in-motion for enforcement in Europe – B. Jacob and H. Van Loo 25
 - Bridge weigh-in-motion – latest developments and applications worldwide E. O'Brien, A. Žnidarič and T. Ojio ... 39
Session 1. Traffic and Freight Management, Road Safety and Pricing, using WIM networks ... 69

Weigh-in-motion measurements in the national road network of Spain during the 2002-2003 period. Data collection procedure and main results – J. LEAL 71

Measure in motion vehicle detector on the motorways, expressways and the roads of Slovakia – S. URGELA and R. JANOTKA 85

Test of WIM sensors and systems under Brazilian conditions H. GOLTSMAN, M. PAIVA, A. VALENTE and F. PANTOJA 97

Comparison of WIM, noise, vibration data from heavy vehicles L. POULIKAKOS, K. HEUTSCHI, M. ARRAIGADA, P. ANDEREGG and M. PARTL 105

Environmental noise measurement in combination with BWIM T. OJIO and K. YAMADA ... 115

Weigh-in-motion system to manage heavy vehicle access to the infrastructures H. IMINE, S. SRAIRI, D. GIL and J. RECEVEUR 127

Special vehicle automatic measurement system and its application H. NISHIDA, H. SATO, H. KAWAY and S. NAKAO 137

Practical experiences and the next generation of WIM M. DUKKER and D. MARPLES ... 149

Session 2. Technology and Testing .. 161

Installation and experimentation of MS-WIM systems with three strip sensor technologies - early results – B. JACOB, M. BOUTELDJA and D. STANCZYK 163

A statistical spatial repeatability algorithm for multiple sensor weigh in motion E. O'BRIEN, A. GONZALEZ and F. MCINERNEY .. 175

Optimized design of weigh-in-motion multiple-sensors array by an energetic approach – K. BOUTELDJA, B. JACOB, and V. DOLCEMASCOLO 187

Multi-sensor weigh-in-motion system – J. GAUDA, R. SROKA, M. STENCEL and T. ZEGLEN ... 199

Heavy vehicle on-board mass monitoring: capability review – B. PETERS and C. KONIDITSIOTIS ... 209
Session 3. Bridge Weigh-in-Motion

- Comparison of conventional and regularized bridge weigh-in-motion algorithms (C. Rowley, A. Gonzalez, E. O'Brien, and A. Žnidarič) - 271
- Improving bridge-WIM results with better road evenness and advanced compensations (I. Lavrič, A. Žnidarič, and J. Kalin) - 283
- Moving vehicle load identification from bridge responses based on method of moments (MOM) (L. Yu, T. Chan, and J.-H. Zhu) - 297
- Test of a B-WIM system on integral and steel orthotropic deck bridges in France (M. Bouteldja, B. Jacob, and V. Dolcemasco) - 311
- Bridge weigh in motion: French tests and Swedish experience (V. Dolcemasco and L. Sjögren) - 322

Session 4. Vehicle Size and Weight Enforcement

- Development and implementation of a WIM network for enforcement in France (Y. Marchadour and B. Jacob) - 335
- Pre-selection of overloaded vehicles (D. Stanczyk, B. Geroudet, C. Thionnn, and A. Millot) - 347
- Targeted roadside enforcement using WIM and ANPR (M. Jones) - 359
- Combined LS & HS WIM systems for law enforcement and toll road applications (E. Doupal and R. Calderara) - 369
- Virtual weigh stations for monitoring of trucks by-passing fixed weigh stations (F. Klebe) - 377
Session 5. Standards, Data Quality, Storage and Management

A synthesis of the US practice on high speed WIM calibration – A. Papagnannakis 387

Utah commercial motor vehicle weigh-in-motion calibration: current practice and recommended procedure – G. Schultz and L. Seegmiller 399

WIM accuracy verification through simulation – M. Slavik 411

Macroscopic WIM calibration – G. De Wet and M. Slavik 423

Auto-calibration and temperature correction of WIM systems - P. Burnos 437

Sub-0.1 percent error in portable, low-speed weigh-in-motion
R. Abercrombie, L. Hively, M. Scudiere and F. Sheldon 447

Session 6. Data for Bridge Engineering

Application of WIM in probability based safety assessment of bridges
A. O’Connor 461

Identification of equivalent traffic load on bridge using optical fiber strain sensors – C.P. Chou and C.Y. Wang 475

Measurements of bridge dynamics with a bridge weigh-in-motion system
A. Žnidarič, I. Lavrič and J. Kalin 485

Extreme effects of the traffic loads on a prestressed concrete bridge
D. Siegert, M. Estivin, J. Billo, F. Barin and F. Toutlemonde 499

Interaction effect of traffic load and bridge details susceptible to fatigue
H. Leendertz and A. De Boer. 511

Fatigue life estimation of a concrete slab using B-WIM and traffic census
Y. Oshima and K. Sugiuara 525

Session 7. Data for Pavement Engineering

The use of weigh-in-motion and stress-in-motion data in road management: the results of a PIARC inquiry – F. La Torre 539

Extending WIM-NL-data with a loading indicator and a truck damage factor
H. Van Saan and D. Van Boxel 549
Effects of increasing truck weight limit on highway infrastructure damage
K. Peters and D. Timm .. 559

Effects of axle load spectra shifts on highway infrastructure damage and cost
D. Timm, K. Penters and R. Turochy 571

Stress-in-motion measurements of heavy vehicles from the Swiss footprint
monitoring site – G. Morgan, L. Poulikakos, M. Arriggada, R. Muff
and M. Partl ... 579

Stress-in-motion (SIM) – a new tool for road infrastructure protection?
M. De Beer ... 591

List of authors .. 605