Table of Contents

Preface .. xi

Chapter 1. Machining of Wood and Wood Composites 1
Grzegorz KOWALUK

1.1. Introduction 1
1.2. Wood and wood-based composites 2
1.3. Approach to cutting 7
1.4. Main techniques of machining 11
1.5. Problems of machining wood and wood composites – a review 19
1.6. Into the future – further scenarios of wood and wood composites machining 21
1.7. Acknowledgement 23
1.8. Bibliography 24

Chapter 2. Wood and Wood-based Panel Machining Quality 27
Cristina COELHO, Nuno GARRIDO, Jorge MARTINS, Luisa CARVALHO and Carlos COSTA

2.1. Solid wood machining 27
2.1.1. Background 27
2.1.2. Cutting forces 29
2.1.3. Chip formation 30
2.1.4. Case study – monitoring the cutting
operation ... 33
2.2. Wood-based panels machining 39
 2.2.1. State of the art 39
 2.2.2. Processes for wood-based panels
machining ... 45
 2.2.3. Case study 46
2.3. Surface quality 50
 2.3.1. Objective surface characterization 50
 2.3.2. Subjective surface characterization 64
2.4. Case study: solid wood machining and
surface quality evaluation 65
2.5. Case study: particleboard machining and
edge quality evaluation 73
2.6. Bibliography 75

Chapter 3. Reducing Tool Wear by Cryogenic
Treatment and Cooling with Refrigerated Air
when Processing Medium Density Fiberboard 83
Rado GAZO, Judith GISIP and Harold A. STEWART

 3.1. Introduction 83
 3.2. Effects of refrigerated air 85
 3.2.1. Preliminary considerations 85
 3.2.2. Tool wear 90
 3.2.3. Elemental analysis and tool
microstructure 91
 3.2.4. Electrical current and power
consumption 96
 3.2.5. Edge quality of MDF 98
 3.2.6. Conclusions 98
 3.3. Effects of cryogenic treatment and
refrigerated air 98
 3.3.1. Preliminary Considerations 100
 3.3.2. Tool wear 102
Chapter 4. Wearing Mechanisms Contributing to Reduced Tool Life after Wood and Secondary Wood Products Machining

Bolesław PORANKIEWICZ

4.1. Introduction .. 116
4.2. Cutting edge-material cut interface 116
4.3. TGA indirect evidence of HTTR 119
4.4. Theoretical QC analysis of HTTR 134
4.5. Investigations of direct evidence of HTTR 140
4.6. Cutting edge SEM image examinations 143
4.7. Synergistic effect of high temperature reactions and mechanical wear 146
4.8. Final remarks 150
4.9. Conclusions .. 154
4.10. Acknowledgements 155
4.11. Bibliography 155

Chapter 5. Monitoring Surface Quality on Molding and Sawing Processes for Solid Wood and Wood Panels

Alfredo AGUILERA

5.1. Introduction .. 159
5.2. General concepts 160
5.2.1. Raw material: solid wood and panels 161
5.2.2. The cutting process 165
5.3. Monitoring the cutting process 176
5.3.1. Cutting forces 178
Chapter 6. Evaluating the Roughness of Sanded Wood Surfaces

Lidia GURAU, Hugh MANSFIELD-WILLIAMS and Mark IRLE

6.1. Introduction .. 217
 6.1.1. Sanded surface quality and its evaluation 217
 6.1.2. Metrology of sanded wood surfaces and associated problems .. 219
6.2. Profile filtering applied to wood surfaces 228
 6.2.1. Profile filtering with the Gaussian filter from ISO 11562 and ASME B46.1 228
 6.2.2. Profile filtering with the Gaussian two step filter from ISO 13565-1 233
 6.2.3. Profile filtering with the Gaussian regression filter from ISO/TS 16610 – 31 235
6.3. A proposed method for separating processing roughness from anatomical roughness 246
6.4. A case study: the processing roughness of oak surfaces sanded with various grit sizes 250
 6.4.1. Experimental design 250
 6.4.2. Results and discussion 253
 6.4.3. Conclusions .. 258
6.5. Concluding remarks 259
6.6. Perspectives .. 260
6.7. Acknowledgements 261
6.8. Bibliography .. 261

List of Authors .. 269

Index ... 273