Table of Contents

Author Biographies .. xi

Introduction .. xv

PART 1: ENGINEERING LARGE-SCALE COMPLEX SYSTEMS
AND EMERGENCY SITUATION MANAGEMENT 1

Chapter 1. Engineering Large-scale Complex Systems 3
 Dominique LUZEAUX

 1.1. Introduction ... 3
 1.2. The notion of service in large complex systems 7
 1.3. Architecture: a key concept 11
 1.4. Towards resilient systems 13
 1.4.1. Resilience: definitions 14
 1.4.2. Resilience versus dependability 17
 1.4.3. Engineering resilience 18
 1.5. Development of relationships between participants 28
 1.6. Complexity: plurality of viewpoints for systems engineering 35
 1.7. The maintenance and logistics of systems of systems 59
 1.8. Perspectives and lines of enquiry 61
 1.8.1. Contextual elements 61
 1.8.2. Factors of influence 64
 1.8.3. Trends, issues and challenges in systems engineering 66
 1.8.4. Development of the engineering process 71
 1.8.5. Themes of research 76
 1.9. Conclusion ... 79
 1.10. Bibliography ... 82
Jean-René RUAULT

2.1. Introduction 85
2.2. Main concepts of systems engineering 86
2.3. Context of the emergency situation management scenario 89
 2.3.1. Global context: Tairétalet 89
 2.3.2. Synthesis of the Dubbus accident report 90
 2.3.3. Decision of the Tairétalet authorities 92
 2.3.4. Analysis of context and participants involved 96
 2.3.5. Results of studies on existing resources 99
 2.3.6. Emergency situation management scenario: perimeter and architecture 102
 2.3.7. Reference operational scenario 102
 2.3.8. Alternative operational scenarios 108
 2.3.9. Perimeter and component systems of the system of systems 109
 2.3.10. System dimensions: lines of development 111
2.4. Architecture of component systems of the system of systems 116
 2.4.1. Detecting an accident: the accident detection system 116
 2.4.2. Evaluating the gravity of an accident, coordinating the emergency services and allocating casualties to hospitals: the regional call center .. 135
 2.4.3. Casualty evacuation: emergency service centers and hospitals ... 175
 2.4.4. Continuous improvement of emergency situation management .. 176
 2.4.5. Systems engineering for the regional call center, emergency service centers and hospitals 176
 2.4.6. Specificities of system of systems engineering 195
2.5. Conclusion 197
2.6. Acknowledgements 197
2.7. Bibliography 198

PART 2: CASE STUDY: ANTARCTICA LIFE SUPPORT FACILITY 205

Chapter 3. Introduction to the Antarctica Life Support Facility Case Study
Jean-Luc WIPPLER

3.1. Why Antarctica? 208
3.2. Fictional context of the study 209
 3.2.1. The Antarctica mission 209
 3.2.2. The cast of characters 211
Table of Contents

3.3. Some data on the Antarctic and Adélie Land
- 3.3.1. Geography 212
- 3.3.2. Climate 212
- 3.3.3. Biological patrimony 213
- 3.3.4. Location of the life support facility 213
- 3.4. Bibliography 213

Chapter 4. Finding the Right Problem
Philippe THUILLIER and Jean-Luc WIPPLER

- 4.1. What system are we dealing with? 216
 - 4.1.1. Purpose and missions 217
 - 4.1.2. The system perimeter 219
- 4.2. System lifecycle 221
- 4.3. Who does the system involve? 226
- 4.4. Creating a working framework 228
- 4.5. Gathering information 229
- 4.6. Modeling the context 235
- 4.7. Understanding and defining goals 236
- 4.8. Modeling the domain 241
- 4.9. Defining stakeholder requirements and constraints 247
- 4.10. Things to remember: stakeholder-requirements engineering 251
- 4.11. Bibliography 252

Chapter 5. Who Can Solve the Problem?
Olivier KLOTZ and Jean-Luc WIPPLER

- 5.1. Consultation and selection 256
 - 5.1.1. Establishment of an acquisition plan 256
 - 5.1.2. Creating an initial list of companies 258
 - 5.1.3. Organizing and launching a request for information 259
 - 5.1.4. Selecting companies for the call to tender 260
 - 5.1.5. Preparing and launching the call to tender 261
 - 5.1.6. Selecting a partner company 261
- 5.2. Responding (and winning) 262
 - 5.2.1. Approaching the problem 262
 - 5.2.2. Advancing into the unknown 263
 - 5.2.3. Where should we start? 265
 - 5.2.4. Doing it all simultaneously 269
- 5.3. Committing to a “right” definition of the system to be created 272
 - 5.3.1. From stakeholder requirements to technical requirements 273
 - 5.3.2. Covering the whole of the System’s lifecycle 274
 - 5.3.3. Accounting for stakeholder expectations and constraints 276
 - 5.3.4. Remaining realistic 277
5.3.5. Removing major risks .. 278
5.3.6. Facing identified threats 279
5.3.7. Use of precise terminology 282
5.4. Creating the list of technical requirements 284
5.4.1. Creating the necessary model 284
5.4.2. Expressing the “right” technical requirements 286
5.4.3. Compliance with the specification 288
5.5. Things to remember: technical requirements engineering 290
5.6. Bibliography .. 291

Chapter 6. Solving the Problem 293
Charlotte SEIDNER and Jean-Luc WIPPLER

6.1. General approach .. 294
6.2. Functional design ... 297
6.2.1. A brief introduction to functional design 297
6.2.2. Application .. 300
6.3. Physical design ... 313
6.3.1. Identifying physical components 313
6.3.2. Allocation of functions to identified components 315
6.3.3. Grouping components by sub-system 318
6.3.4. Architecture of (some) sub-systems 321
6.3.5. Sub-systems architecture of the life support facility 324
6.4. Interfaces ... 326
6.4.1. Waste management .. 330
6.4.2. Centralized supervision 331
6.4.3. Other types of interactions between components 332
6.5. The “playing fields” of the systems architect 333
6.6. EFFBDs ... 336
6.6.1. An informal introduction to EFFBD diagrams 336
6.6.2. Syntax and structure of EFFBDs 338
6.6.3. Formalization of EFFBDs 338
6.6.4. Verification and validation of EFFBDs 340
6.7. Things to remember: architectural design 342
6.8. Bibliography .. 343

Chapter 7. Solving the Problem Completely, in a Coherent and Optimal Manner ... 345
Jean-François GAJEWSKI, Hélène GASPART-BOULINC
and Jean-Luc WIPPLER

7.1. Making the right technical decisions at the right level and the right time .. 347
7.1.1. Formalizing possibilities 348
Table of Contents

7.1.2. Using a multi-criteria analytical approach 350
7.1.3. Reinforcing and optimizing choices 360
7.1.4. Things to remember 363
7.2. Integrating disciplines 366
7.2.1. Integrating dependability 368
7.2.2. Integrating the human factor 380
7.2.3. Things to remember 389
7.3. Bibliography 391

8.1. Positioning integration, verification and validation 395
8.2. Integration, verification and validation in the system’s lifecycle 403
8.3. Analyzing input 405
8.4. Establishing an integration, verification and validation strategy 407
8.4.1. Identifying integration, verification and validation objectives 408
8.4.2. Stages of integration, verification and validation 415
8.5. Defining the infrastructure 419
8.5.1. Platforms 419
8.5.2. Tools 420
8.5.3. Data 422
8.6. Integration, verification and validation organization 422
8.7. Choosing techniques 423
8.7.1. Review 424
8.7.2. Testing 425
8.7.3. Traceability 426
8.8. Things to remember: integration, verification and validation 427
8.8.1. Activities linked to engineering 427
8.8.2. Anticipation 427
8.8.3. A multi-faceted approach 428
8.8.4. Strategy: a key point 428
8.8.5. The IVV manager: a high-pressure role 429
8.9. Bibliography 429

9.1. “Before we can manage a solution, we need to find one!” 432
9.2. “Modeling isn’t drawing!” 434
9.3. Implementing systems engineering 437
9.4. Acknowledgements 439
9.5. Bibliography 440

Chapter 8. Anticipating Integration, Verification and Validation 393
Daniel PRUN and Jean-Luc WIPPLER

Chapter 9. Conclusion to the “Antarctica Life Support Facility” Case Study 431
Jean-Luc WIPPLER