
Chapter 1 

Introduction 

1.1. Introduction and preliminary warning 

Matter stability and the way in which rigid crystalline or amorphous arrays of 
atoms can be formed are ruled by two pillars of physics: electromagnetism and 
quantum mechanics; nothing else, provided that we admit the existence of 
elementary constituents such as atom nuclei without having to derive their internal 
structure from the first principles (then we need to add nuclear forces to our bunch 
of tools). The postulates and basic equations of these two theories can be written on 
a couple of pages, and everything can be derived from them1. If the world was ruled 
by classical mechanics, it would simply be impossible to obtain stable atoms2 or 
stable chemical bonding to ensure the existence of matter as we all experience it in 
our everyday life. Thus, it is something of a misnomer to say that we are going to 
study quantum devices as opposed to devices which would not be quantum. 
Everything is ruled by quantum mechanics, from the insulating or conducting 
character to the color of any piece of matter or object that you can see inside the 
room where you are now reading this introduction (see also Figure 1.1). To 
understand our macroscopic world, we often feel that once we admit the existence of 
stable matter, we can content ourselves with using the second Newton’s law of 
motion and classical gravitational forces. An aeronautics engineer does not put too 
much quantum mechanics in his calculations, but this is certainly no longer the case 
                              
1 Of course with a substantial amount of hard work and mathematics, and adding some 
thermodynamics. Note also that if quantum mechanical predictions can be verified with an 
astonishingly high precision, their interpretation was (and is) the source of thousands of 
scientific articles and books. 
2 Classical electrons accelerated over orbits radiate electromagnetic waves and thus lose 
energy. Thus, bound electrons would collapse onto the atoms.  



2     Electron Transport in Nanostructures and Mesoscopic Devices 

if we want to justify the way in which electrons and therefore the electrical current 
behaves in a bulk semiconductor. Without a periodic atomic lattice and quantum 
mechanics, we could not find free electrons able to carry a current in a p-n junction, 
or in the channel of transistors which form the integrated circuits inside our 
computers. Thus, the reason why the devices under study in this book are called 
quantum is that we can straightforwardly apply to them the basic quantum effects 
that students are accustomed to calculating in an introductory quantum mechanics 
course. 

 

 

Figure 1.1. The ubiquitous character of quantum mechanics 

In nanostructures, electrons can be confined in potential wells narrow enough to 
obtain energy quantization along the confining direction. Their dimension is small 
enough for probing the dual wave-particle nature of the electron in a straightforward 
manner, because the electron wave function phase can be kept coherent over the 
whole device length. Thus, it becomes possible to observe wave interference effects 
just by measuring the average current which can be passed through such 
components, and particle-like properties from current noise data. As once stated by 
the physicist Esaki, this looks like some kind of “do-it-yourself” quantum 
mechanics: you are not required to become a specialist in group theory and 
irreducible representations, or of field-theoretic methods to get in touch with the 
essence of the topic (see also Figure 1.2). In addition, other specific effects, although 
not quantum-mechanical, are also due to reduced dimensions: if you can inject a few 
electrons into a nanostructure and if the capacitance between this nanostructure and 
the rest of the world is very small, we can probe effects which are due to charge 
granularity (we cannot divide the electron charge), and which are known as 
Coulomb blockade. Such effects are the subject of intensive research in R&D 
laboratories, because many people hope to put them to good use to produce new 
types of memories and devices that are smaller, faster and require a smaller amount 
of operating power. The aim of this book is to give an introduction to the basic 
concepts which govern the conduction mechanisms taking place in such small 
devices. 
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Figure 1.2. The quantum garage 

Many (not to say most) of the phenomena described in this book usually take 
place at quite low temperatures, or in devices not yet (and for some of them never) 
used in the industry. The physics described here is not useful for understanding how 
industrial semiconductor devices behave in most applications right now, with the 
notable exception of resonant tunneling. Nevertheless, “today’s” silicon (Si) Metal-
Oxide-Semiconductor Field-Effect Transistors (MOSFETs) definitely exhibit non-
stationary and ballistic transport effects. Explaining these effects requires us to use 
some of the concepts developed in this book, even the high electric fields involved 
in MOSFET operation make the application of such concepts much more 
complicated than what is described in this introduction. At room temperature, the 
electron mean free path in silicon is in the 5-10 nm range, not far from the 45 nm 
channel length of the current CMOS technology, and integrated chips using a 32 nm 
process technology have already been demonstrated by the INTEL corporation in 
2007. Figure 1.3 shows the picture of a 20 nm channel length prototype MOSFET 
produced in 2006 by LETI-CEA. Thus, even at room temperature some commercial 
electronic devices are close to the ballistic regime. Those industrial MOSFET’s are 
fabricated with an incredibly high reproducibility in order to form extremely 
complex integrated circuits (and as a side note such precision and reproducibility are 
actually far from being achieved in most research laboratories working in the realm 
of mesoscopic physics and nanostructures, or with semiconductors more exotic and 
physically more appealing than silicon). Device-modeling based on ballistic 
properties has thus become an active research field, even in the case of silicon 
devices (see, e.g., [NAT 94] for one of the pioneering Si papers). 
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In addition, mesoscopic effects are important in four respects: 

(i) they are often of great physical significance, and give a deep and 
straightforward insight into some of the most striking implications of quantum 
mechanics (for instance, they provide unambiguous and clear demonstrations of the 
dual electron nature, particle and wave); 

(ii) although often obtained at low temperatures or high magnetic fields they are 
very useful for extracting physical parameters dealing with (nano)structures actually 
used in applications; 

(iii) some of the effects are already used in (e.g. resonant tunneling) or 
potentially useful for (e.g. Coulomb blockade) applications; 

(iv) although still difficult to engineer, devices made from graphene or carbon 
nanotubes exhibit truly ballistic and quantum-coherent effects even at room 
temperature. Thus, it is quite possible that not only ballistic, but also quantum-
coherent effects may be present in electronic applications in the near future. 

 

 

Figure 1.3. A transmission electron microscope view of a planar double-gate MOSFET 
fabricated by LETI-CEA with a 20 nm channel length; reproduced by permission after  

J. Widiez et al., IEEE Transactions on nanotechnology, vol. 5, p. 643 (2006),  
copyright ©2006IEEE ([WID 06]) 

As a consequence, in most of the largest semiconductor companies, and in a very 
large number of university labs, intensive research work is devoted to such 
structures. Scarcely applied though it may seem at first sight, this field of activity is 
in fact the leading edge of semiconductor research.  

 
This book is designed to be accessible to the independent reader, and to students 

not having a strong background in solid-state physics (e.g. issued from engineering 
disciplines). As a matter of fact, this book is an attempt to answer the following 
question: what must be taught to students starting from scratch to make them 
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understand the bases of electron transport in mesoscopic devices? A professor 
placed in such a situation soon realizes that a good deal of solid-state physics and 
quantum mechanics is required. This explains the incorporation of chapters which 
are usually absent from the more specialized, already-existing books, and marks the 
difference between them and this. In addition, to follow the classification once given 
by J.M. Ziman, this book does not fall into the category of a “treatise” but into that 
of a “textbook”, with the purpose of introducing and explaining concepts. The text 
has been written with the aim of being as self-contained as possible, and is based on 
an oral course delivered at an international European master’s degree course 
involving three technical universities (GrenobleINP, EPFLausanne and 
Polit’oTorino). It is a deliberate choice of the author to keep in the book the spirit of 
the oral course, and this is the reason why the reader should not be surprised to be 
sometimes interpellated or hailed in a somewhat familiar way3. 

 
Assimilating the quantum-mechanical rules summarized at the very beginning of 

the book suffices to derive any subsequent result, but should by no means be 
considered as enough to master quantum mechanics itself. Hence, and despite the 
fact that the text remains at an introductory level, a complete understanding of the 
course probably requires a minimum prior knowledge and self-maturation of the 
basic quantum-mechanical concepts. A reader not acquainted with this field will 
certainly feel the need to consult more authoritative manuals, due to the innumerable 
number of questions, either technical or fundamental, that a concise and incomplete 
presentation of quantum mechanics must arouse in any normally constituted mind. 
Some knowledge of solid-state and semiconductor physics certainly help as well, but 
all concepts useful for understanding the book can in principle be found in the book 
itself, and since this book is an introduction dedicated to a broad audience, maybe 
some of you are probably already acquainted with the required solid-state physics 
notions. For those who are experienced in solid-state physics it is possible to simply 
skip most of the reminders which make up Chapter 2. Besides, many of those 
reminders are not always quite rigorously demonstrated. All undemonstrated or 
heuristically-derived quantum-mechanical formulae can be found and are rigorously 
derived in a self-contained, encyclopedic textbook: [COH 77]. Solid-state physics 
has its self-contained book too: [ASH 76]. For bulk semiconductor physics and 
transport, an advanced and quite remarkable and complete textbook was written by 
[RID 82], but it is not essential for understanding this book. Eventually, we can find 
books specifically devoted to mesoscopic electron transport, which can be of great 
support for a better understanding or for gaining more information (the list below is 
not exhaustive): [BEE 91], [KEL 95], [DAT 95] and [FER 97]. The book which is 
the closest in spirit to this course is the one by Datta. It includes many exercises and 
also contains more advanced formalisms (e.g. Green’s functions) and discussions, 

                              
3 As you may have already noticed, the familiar way of addressing the reader began in the 
very first lines of this introduction. 
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which are not necessarily required at this introductory level. The book by Kelly 
presents a very large amount of data and also deals with aspects which are either 
more related to technological aspects or closer to the applications. 

 
This book is an introduction and as such a number of important aspects have 

been omitted, mainly those which imply the use of mathematical concepts too 
involved to be developed in front of an audience new to the field. In particular, the 
reader will not find here a rigorous description of Green’s function formalism, 
which is necessary to include electron-electron interactions in transport modeling. A 
general discussion and study of many-body effects is also absent, which would be 
mandatory to understand a physical phenomenon such as the fractional quantum 
Hall effect, metal-based mesoscopic devices, carbon nanotubes operating in the 1D 
form of a Luttinger liquid and many others. Justice has not been done to the electron 
spin and its possible applications. This book could thus be given a second title: how 
far can we go using only independent electrons and the exclusion Pauli principle 
(see also Figure 1.4)? Surprising though it may seem, a good deal of nanostructure 
physics can still be grasped that way, but the reader will not find in this book a 
wealth of phenomena associated with electron-electron interactions. If they are not 
discouraged by this introductory text their study should constitute the next step, to 
be achieved by studying more specialized treatises and articles. Thus, if after 
studying the various chapters the student decides to read further and deeper, the 
main objective of this book will have been fulfilled. In the same spirit, we shall skip 
some difficult demonstrations which would be required for a rigorous derivation of 
some important solid-state physics results4. However, even if difficult theoretical 
techniques have been deliberately banished from the text, “the language of physics 
is mathematics”, and none of the chapters escape from the rule. 

 

 

Figure 1.4. The quantum society and Pauli’s exclusion principle 

                              
4 Whenever this occurs, the unsatisfied reader will always be left with the possibility of 
consulting the more advanced textbooks or specialized articles mentioned in the bibliography. 

 

 

 

Impossible.

No two men can
be in the same quantum 

state.

What about sharing 
our resources? 
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Most exercises proposed at the end of each chapter are easy and their purpose is 
to provide the reader with a means of checking that they have correctly assimilated 
the chapter content and concepts. However, some of them require more time, and 
have been inserted to complete points not detailed in the main text.  

 
Not all the sections were dealt with during the original oral course. I have put 

indicators at the beginning of each section: 

This section is a reminder. Thus it can be skipped if the reader is already 
familiar with the corresponding field. 

This section is essential to the book (and, quite accessorily, it may be helpful 
to prepare an exam). Some reminders belong to this category. 

This section is not a reminder, but is not considered as essential to understand 
the other parts. 

This section can be skipped at first reading.  

1.2. Bibliography 

[ASH 76] ASHCROFT N.W. and MERMIN N.D., Solid State Physics, Wiley, New York, 
1976. 

[BEE 91] BEENAKER C.W.J. and VAN HOUTEN H., Quantum Transport in 
Semiconductor Nanostructures, Solid State Physics 44, Academic Press, 1991. 

[COH 77] COHEN-TANNOUDJI C., DIU B. and LALOË F., Quantum Mechanics, Wiley, 
New York, 1977. 

[DAT 95] DATTA S., Electronic Transport in Mesoscopic Systems, Cambridge University 
Press, 1995. 

[FER 97] FERRY D.K. and GOODNICK S.M., Transport in Nanostructures, Cambridge 
University Press, 1997. 

[KEL 95] KELLY M.J., Low-dimensional Semiconductors, Oxford University Press, 1995. 

[NAT 94] NATORI K., “Ballistic metal-oxide-semiconductor field effect transistor”, Journal 
of Applied Physics, vol. 76, no. 8, 1994, p. 4879-4890. 

[RID 82] RIDLEY, B.K. Quantum Processes in Semiconductors, Clarendon Press, Oxford, 
1982. 

[WID 06] WIDIEZ J., POIROUX T., VINET M., MOUIS M., DELEONIBUS S., 
“Experimental comparison between sub-0.1µm ultrathin SOI single- and double-gate 
MOSFETs: performance and mobility”, IEEE Transactions on Nanotechnology, vol. 5, 
no. 6, 2006, p. 643-648. 





 

Chapter 2 

Some Useful Concepts and Reminders 

2.1. Quantum mechanics and the Schrödinger equation  

2.1.1. A more than brief introduction 

The following is only a summary which includes the basic quantum-mechanical 
(QM) equations required for understanding the book. It is by no means a rigorous 
introduction to the topics, and if you want to go further, a wise thing to do would be 
to immerse yourself, e.g., in the introductory textbook by R.P. Feynman [FEY 65], 
and then in the book by Cohen-Tannoudji et al. [COH 77] for a while1. Besides, 
several formulations can be used to describe quantum mechanics, and here we shall 
not really make the effort of differentiating them from one another. A concise 
description of those different formulations can be found in [STY 02]. 

 
In classical mechanics the elementary constituents of matter are massive point 

particles whose movement is controlled by electromagnetic or gravitational forces. 
At any instant we can precisely define the particle position and, provided that at a 
time t we are given the position and velocity of all the system particles, we can 
calculate everything at any other time, and obtain well-defined trajectories (with a 
powerful enough computer if the particles are numerous, etc.), even if the system 
remains isolated. Thus, the whole picture is in principle perfectly deterministic. In 
quantum mechanics the situation is far more subtle. Experimentally, it appears that if 
we let a system evolve isolated for a while, the maximum information concerning 

                              
1 Of course these are not the only useful introductory QM textbooks, and the reader can also 
consult, e.g., [DIR 58], [SCH 68], [MES 62], [BOH 54], [MER 70], [LAN 65], among which 
many present a historical interest in addition to their scientific value, and there are many 
others. 
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this system that is physically accessible to human knowledge does not allow us to 
predict in a deterministic and unique way the result which will be obtained once we 
act on this system to measure some of its properties.  

 

 

Figure 2.1. Quantum-mechanical interference experiment illustrating  
the dual wave-particle nature of the electron 

The celebrated double-slit interference experiment is probably one of the more 
striking and meaningful illustrations of the quantum nature of matter. This effect 
figures in due place in almost any introduction chapter on quantum mechanics, and 
we shall respect this very justified habit. Interference experiments such as that 
illustrated by Figure 2.1 reveal that it is no longer possible to consider an entity such 
as an electron or a proton as a particle, and that it is not possible to consider it as a 
pure wave either [FEY 65]. “Identically prepared” electrons propagating through 
double slits exhibit interference patterns like waves [JON 61], but if we put a screen 
behind the plane of those slits we always obtain localized spots, as for particles 
[TON 89]. It is the statistical collection of a large number of such individual events 
which forms the interference pattern. Thus, in quantum mechanics (and in the real 
world) we have to assign a dual nature to electrons, whose behavior can be modeled 
only as a combination of both a particle and a wave. Suppress one slit and we lose 
the interference pattern. The wave really passes through both slits. Try to detect the 
electron at one of the two slits and we also lose the pattern, because the particle-like 
detection at one slit instantaneously reduces the extended propagating wave.  

 

electron 
gun 

double slit 

detection 
screen 

zoom on a 
restricted area 
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In some textbooks it is stated that quantum mechanics does not allow us, even in 
principle, to calculate any trajectory, and that it is a probabilistic theory in essence. 
This is not a correct statement, because one interpretation, known as the de Broglie-
Bohm theory, gives a perfectly deterministic picture of quantum mechanics (at least 
for massive particles). In such an interpretation both a wave and a particle co-exist. 
The wave guides the particle, and in Bohm’s version the only guiding rule states that 
the particle momentum is equal to the phase gradient of the complex wave obeying 
the Schrödinger equation multiplied by ħ, a physical quantity known as the Planck 
constant [HOL 93]. In such a picture we can calculate well-defined trajectories 
(which are quite weird compared to classical ones, due to the action of the guiding 
wave). The unknown parameters, or “hidden variables”, which make experiments 
exhibit a statistical aspect are nothing but the initial particle coordinates with respect 
to the wave. Thus, it is not possible to say from quantum mechanics that the basic 
facts of nature are undeterministic in principle. However, since this interpretation 
does not provide any new prediction with respect to the usual quantum rules, and 
exhibits the moral drawback of being obviously non-local, it has not attracted the 
favor of most physicists2. 

 
The “orthodox” interpretation of the quantum-mechanical formalism is that in 

between measurements we cannot precisely define a thing such as a particle; the 
experimental indeterminacy obtained when repeating the same experiment a large 
number of times with identically prepared systems results from the indeterminacy of 
nature itself, and not from a difference in system preparation which would be 
unknown to the observer. This was quite an incredible statement when quantum 
mechanics emerged, but it has now become a common “philosophical” view among 
scientists. In this book we shall not enter into those considerations any longer. We 
shall just use the quantum-mechanical rules, which up to now have always been 
experimentally validated with a numerical precision unprecedented by any other 
physical theory. 

                              
2 Non-locality, or the possibility of instantaneous action-at-a-distance, does not agree with 
another pillar of modern physics, special relativity, so physicists are reluctant to accept it in 
other theories. In Bohm’s interpretation experiments conducted on space-separated but 
correlated particles make this non-locality quite explicit. Note that in private most scientists 
would admit that quantum mechanics is deeply non-local, whatever the interpretation, but in 
public they see it as an unforgiveable flaw, as soon as this non-locality is no longer buried in 
the mysteries of the “Copenhagen’s school” or “orthodox” interpretation, and is given a 
straightforward meaning. Note that Bohm’s interpretation also has its “weaknesses”. For 
instance, if at some time t the particle distribution is given by the square modulus of the wave 
function, this implies that it will be true forever; however, there is nothing which rigorously 
justifies when and how it began to be so. 
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5.8. Fano resonance  

Consider an electron prepared in a discrete state coupled to a continuum as in the 
previous section. Add to this system a bound state to which are coupled both the 
continuum and the discrete state. It turns out that the excitation spectrum resulting 
from the discrete state dilution into the continuum is the product of the interference 
between the two escape paths that can be followed by the electron, either through 
direct coupling or through an indirect coupling mediated by the bound state. The 
analytical shape of the spectrum is specific to the effect and thus constitutes a clear 
signature of its occurrence. For this reason Fano interference is without doubt one of 
the few essential landmarks with respect to quantum interference experiments ([FAN 
35] and [FAN 61]), to be put on the same footing as the double-slit interference set-up, 
the Aharonov-Bohm effect or the weak localization phenomenon. In the double slit 
experiment, interference is evidenced through the spatially-dependent collected signal. 
In the Fano effect, interference is evidenced through the energy-dependent collected 
signal. It is worth noting that the discrete state need not be bound, so that the overall 
transmission through a device which incorporates in parallel both an open channel and 
a channel resulting from a resonant-tunneling state is a typical Fano resonance 
example. This explains why Fano profiles have in fact been obtained in a number of 
mesoscopic physics experiments, ranging from Aharonov-Bohm rings with a quantum 
dot in one arm to carbon nanotubes. 
 

Consider a system similar to the discrete state coupled to a continuum as in 
section 5.7, but add to this another discrete state, which can be coupled either to the 
first discrete state with a matrix element 

ii wW =ϕξ  (5.68) 

and to the continuum with a matrix element 

wkW =ξ  (5.69) 

The problem can in fact be reduced to studying the transition probability 
between the discrete state |ξ〉 and the “new” continuum formed by the states 
resulting from the dilution of the discrete state |φi〉 into the continuum |k〉. Thus, we 
have to apply Fermi’s golden rule between the initial state |ξ〉 and the final state |ψf〉. 
From equation (5.67) the transition probability from the discrete state |ξ〉 to the 
continuum is proportional to the squared modulus of the matrix element 

ifi
k

fF WkWkW ϕξψϕξψψξ += ∑  (5.70) 



Tunneling and Detrapping     211 

where the right-hand side has been obtained by using the decomposition of this final 
state over |φi〉, the |k〉s and |ξ〉, and where we assumed as before that 〈ξ|W|ξ〉=0. 
Equation (5.70) shows that the probability amplitude is now the sum of two complex 
amplitudes corresponding to the continuum and to the discrete state, respectively. 
By inserting the expressions given by equations (5.50) and (5.52) into equation 
(5.70), and taking equation (5.44) into account, we obtain 

( )
( )222 4/ if

ifi
F

EEv

EEwvw
W

−+Γ+

−+
=ψξ

 (5.71) 

It is common practice to re-write this formula with reduced variables defined as 

( )
w
w

v
Eqand

EE iif

π
δ

ε =
Γ

−
=

2
 (5.72) 

where q is a term which measures the asymmetry degree between the coupling of the 
discrete state |ξ〉 to the evanescent bound state |φi〉 and to the continuum |k〉, 
respectively. This enables us to turn the square of equation (5.71) into 

2

2
2

1 ε

ε
ψξ

+

+
≅

q
W F , (5.73) 

in which we neglected the term v2 in the denominator of equation (5.71). Let us now 
examine this last expression in further detail: the magnitude of the numerator 
depends on the respective signs of the level energy and q, which may add or 
susbtract, depending on whether the energy is below or above the resonance and the 
sign of q is positive or negative. The excitation profiles into the continuum are thus 
expected to reflect this asymmetry, and some particular cases are illustrated in 
Figure 5.20. 

 
Figure 5.20. Fano profiles for different values of the coupling parameter q 

q=0 q=1 q=2 q>>1 

energy ε
0 0 0 0 
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For some limiting cases the shape of the spectrum can be either inverted (anti-
resonance for q=0) or rendered symmetric (q>>1). This physical situation thus leads 
to a much larger variety of resonance spectra than the simpler phenomenon of 
resonant tunneling studied in section 5.5. It must also be stressed that an evanescent 
bound state can have an appreciable lifetime, so that observing such an effect in 
mesoscopic devices usually requires very low temperatures, to keep the wave 
function coherent over times longer than this lifetime. 

5.9. Fano resonance in a quantum-coherent device  

Here we are going to illustrate by a simple analytical example how a Fano 
resonance may occur in a quantum device. To make the analysis easier we shall 
restrict ourselves to the case of one input channel. A first ingredient is of course to 
define a structure in which the electron waves can follow two differentiated paths, 
and a second one is to include a resonant tunneling part. Consider a structure as in 
Figure 5.21, which incorporates both aspects. The electrons issued from the left 
contact can be transferred to the output either through the upper arm (which gives us 
a resonance equivalent to that of the bound state communicating with the continuum 
in section 5.8), or through the lower arm. First we have to define the S-matrix of the 
tunneling resonant structure. A typical matrix is4 

⎥
⎦

⎤
⎢
⎣

⎡
Γ

Γ

Γ+
=

Ei
iE

iE
Su

1
. (5.74) 

 
  

Figure 5.21. Quantum ring exhibiting a Fano-like resonance 

                              
4 Each time we introduce a new type of S-matrix in this section we should check that it is 
unitary and convince ourselves that it does correspond to what we are looking for. For 
instance here check that the transmission probability is formally similar to  equation (5.23). 
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Note that here we use the symbol Γ to define an energy rather than an emission 
rate, so as to simplify the notations. The lower arm could be just a line inducing 
wave dephasing, the corresponding S-matrix being obviously of the form 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−

1
1
θ

θ

i

i

d e
eS  (5.75) 

However, it is more reasonable to also expect some wave attenuation in the 
lower arm, so that a possible S-matrix is 
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. (5.76) 

where td is a number that is positive, real and lower than 1 (note that we did not 
choose an arbitrary phase as in equation (5.75), because the final result critically 
depends on it; this point is discussed later on). The S-matrices of the Y-junctions are 
given by equation (4.20). To calculate the overall transmission we can just apply the 
results that are thoroughly expounded in section 4.4, and in particular use the 
analytical transmission coefficients given by equation (4.25) or equation (4.26). First 
we voluntarily choose a Y-junction with a small transmission t, so that the full 
transmission can possibly correspond to the sum over two different paths, as 
explained in section 4.4, so that it is conceptually close to the principle of the Fano 
resonance. The various factors which enter into equation (4.24) are easily deduced 
from the matrix coefficients appearing in equations (5.74) and (5.76):  

( ) .1,12,,4
=+=

Γ+
Γ−

=
Γ+

= ddduu sr
iE
iEs

iE
E

αα (5.77) 

However, we see that factor αu defined by equation (4.24) gives us a quantity 
which vanishes at the resonance. Thus the zeroth order approximation cannot be 
used, and we have to calculate the transmission using equation (4.26) instead of the 
simpler formula equation (4.25)! After inserting the expressions above into equation 
(4.26) and a few lines of algebra, we find an overall transmission coefficient 
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so that we obtain a transmission probability  

2

2
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where we have defined the reduced energy ε, the constant λ and the factor q as 
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Equation (5.79) has the form of a Fano resonance. However, with small 
transmission coefficients t and td, the factor q is clearly much larger than 1, and we 
do not expect a clear Fano-like resonance shape (see the case q>>1 in Figure 5.20). 
For this example it is therefore preferable to make the calculation for a large 
transmission factor t. This is however achieved at the price of more involved 
analytical results, and a higher conceptual difficulty, because we know that for a 
large t value the final transmission is the result of multiple scattering inside the two 
arms, which are not clearly separated. However, in this case we are going to see that 
it is indeed easier to obtain a clearly asymmetric resonance line shape. Inserting the 
parameters given by equation (5.77) into the general formula equation (4.23) leads 
after some tedious but easy algebra to 
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Since there is an energy offset between the real parts appearing in the numerator 
and the denominator, we do expect a Fano resonance. This is readily observable in 
Figure 5.22, for which the transmission is plotted versus energy, with the 



Tunneling and Detrapping     215 

transmission in the lower arm as a parameter, and taking for the Y-junction 
transmission the maximum admissible value t=1/21/2.  

 
Although it exhibits a Fano-like resonance, the case illustrated by Figure 5.22 is 

somewhat more complicated than the archetype expounded in section 5.8, due to the 
multiple scattering which occurs between both arms. Let us examine if by choosing 
a more reasonable matrix, i.e. putting some attenuation in the upper arm as well, we 
can clearly separate the transmission through both arms before realizing a quantum 
interference at the output and still obtain an outcome which exhibits a Fano-like 
resonance, even for small transmissions. Let us combine in series a resonant 
tunneling matrix as given by equation (5.74) and an “attenuation” matrix as given by 
equation (5.76). After some easy algebra, the usual combination rules (equation 
(4.15)) lead us to a new upper S-matrix of the form 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

+

−+
+

=

γ
γ

γ
γ

γ
γ

γ
γ

iE
riE

iE
ti

iE
ti

iE
riE

S
aa

aa

u
, (5.82) 

where ra and ta are the reflection and transmission coefficients corresponding to an 
attenuation, and γ is equal to 

ar−
Γ

=
1

γ . (5.83) 
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Figure 5.22. Fano-like resonance in a quantum ring with resonant tunneling  
in the upper arm, calculated according to equation (5.82) and with t=2-1/2 
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The transmission is still resonant, but now the resonance magnitude is limited to 
ta, instead of being equal to 1. If we calculate the factor αu defined by equation 
(4.24) from the coefficients appearing in Su (equation (5.82)), we now find that it is 
equal to  
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Provided that the attenuation is important (i.e. ra is close to 1), we see that αu≅4. 
Thus, the inverse quantity never exhibits a pathological divergence, and we can 
apply the zeroth order approximation found for the quantum ring transmission 
coefficient, to find 
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Choose for the lower arm an attenuation S-matrix as given by equation (5.76). If 
the lower arm transmission is weak we have αd≅4 and we obtain a transmission 
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Since in the numerator the imaginary part is shifted in energy we do find a Fano-
like resonance component, to be added to a conventional resonant tunneling part. 
This can be re-written as 
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where the energy ε=E/γ is normalized and the coefficient q is defined as q=ta/td. 
This form is quite close to equation (5.73). It is instructive to see that here the q 
factor is really physically equivalent to the one found in the derivation given in 
section 5.8, since it is the ratio between the transmissions corresponding to the two 
interfering paths that can be followed by the electrons. This factor thus reflects the 
asymmetry between these two paths. In addition, by adjusting this transmission 
ratio, Fano resonance line shapes are clearly no longer restricted to large 
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transmission values. For this particular example, making q=0 leads to a constant 
transmission and not to an anti-resonance. 
 

Note that the dephasing terms appearing in the S-matrix coefficients are essential 
to obtain a Fano-like resonance, which is of course not surprising since this 
phenomenon results from an interference effect. For instance, just consider a lower 
arm S-matrix Sd of the kind 
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which only differs by transmission phase factors from equation (5.76), along with 
the upper matrix Su defined by equation (5.74). As in the first case, we have to 
calculate the transmission coefficient using equation (4.26), and here we just quote 
the final outcome, 
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where parameters α and β are defined as 
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This transmission is always an even function of energy, and there is simply no 
Fano resonance at all! This explains why experimental data of Fano resonance are 
often obtained by varying a magnetic field through the ring, because the magnetic 
field value allows us to adjust the dephasing between the two arms.  

5.10. Fano resonance in the real world  

Fano resonance has now been observed in a number of quantum devices (see, 
e.g., [GOR 00], [KOB 02], [KOB 03], [KOB 04]), and here we reproduce data 
obtained from quantum rings incorporating a dot in one arm and purposely designed 
to exhibit and control a Fano resonance effect. 
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 A scanning electron micrograph of the full device is shown in Figure 5.23. The 
conductance curves reproduced in the same figure very clearly exhibit asymmetric 
resonance peaks, and a Fano-like signature is obtained only when the upper arm 
transmission is not reduced down to zero, demonstrating thereby that an asymmetric 
shape is induced by the interference between the two arms. The shape of these peaks 
can be simply fitted by adjusting the value of the q factor. This shape varies 
qualitatively by passing from small to high q values. In addition, Fano resonance 
only occurs at the lowest temperatures, which are required to produce a large enough 
coherence length (see the conductance curves at the bottom of equation (5.28)). Note 
that the oscillation periodicity is due to the Coulomb blockade effect, which is the 
subject of a full chapter of this book.  

 

 
  

Figure 5.23. Quantum ring with a dot exhibiting a Fano-like resonance.  
Vc is used to control the upper arm transmission; reproduced with permission  

from K. Kobayashi et al., Phys. Rev. Lett. 88, 256801 (2002), copyright (2002) by the 
American Physical Society 
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