Contents

Acknowledgements .................................................. ix

Foreword .............................................................. xi

Chapter 1. Co-constructing the Past for a History of the Chemistry of Natural Substances ................. 1
  1.1. A convergence ............................................... 1
  1.2. “A small world” ............................................. 5
  1.3. Incomplete sources on the history of the chemistry of natural substances? ................................. 11
  1.4. An original way of telling the history of chemistry: “a compagnonnage” ................................. 16

  2.1. Research in France and the CNRS: ambivalent sentiments? ......................................................... 25
    2.1.1. From the creation of the CNRS in 1939 to its first reorganization in 1959. ............................. 25
    2.1.2. From pragmatism to 1979 reform ................................................................. 31
    2.1.3. From the “Assises de la recherche” of 1981–1982 to the 2000s .................................... 32
  2.2. Chemistry at the CNRS .......................................... 35
  2.3 The ICSN: a place for discovery (from 1955 to the 2000s) ......................................................... 43
2.4. “Science is a social and political act”: Pierre Potier (1934–2006) .......................... 65
2.4.1. Learning from research .......................... 66
2.4.2. Research is a resource .......................... 70
2.4.3. Intuition and daring in service of a cause: the discoveries of Navelbine® and Taxotere® .......................... 73

Chapter 3. From Catharanthus roseus Alkaloids to the Discovery of Vinorelbine (Navelbine®) .................. 87

3.1. Catharanthus roseus: botany, herbaria, empirical medicine ........................................... 88
3.1.1. Creation of the genus Catharanthus .......................... 89
3.1.2. The earliest samples and herbaria of C. roseus .......................... 90
3.1.3. From the use of C. roseus in popular medicine for its antidiabetic properties to the discovery of cytotoxic properties .......................... 92
3.2. Bisindolic alkaloids of Catharanthus roseus (1950s–60s) ............................................. 98
3.2.1. From the first chemical studies to the structural characterization of vinblastine and vincristine .......................... 98
3.2.2. Vinblastine and vincristine: the first plant-based anti-cancer medications .......................... 101
3.3. Studies conducted at the ICSN: modified Polonovski reaction and chemical studies of Catharanthus (1960s–1970s) ............................................ 102
3.3.1. The modified Polonovski reaction or Polonovski-Potier reaction .......................... 103
3.3.2. First chemical studies of Catharanthus species at the ICSN .......................... 109
3.4. Studies conducted at the ICSN: semisynthesis of alkaloids such as vinblastine – biological activity and biosynthesis (1970s–1980s) ............................................ 112
3.4.1. State of the art: first semisynthesis leading to analogs of vinblastine with “unnatural” 18’R configuration .......................... 114
3.4.2. First semisynthesis of anhydrovinblastine – an analog of vinblastine with the natural configuration (18’S) .......................... 115
3.4.3. Mechanism of anhydrovinblastine formation .......................... 118
3.4.4. Determination of the configuration at C-18 (18’S versus 18’R):
electronic circular dichroism. 121
3.4.5. Antitumoral activity and evaluation with the tubulin test 122
3.4.6. Biosynthesis of bisindolic alkaloids: anhydrovinblastine is a natural product 126
3.5. From anhydrovinblastine to leurosine, leurosidine, vinblastine and the discovery of vinorelbine 131
3.5.1. Transformation of anhydrovinblastine into leurosine, leurosidine and vinblastine 132
3.5.2. Discovery of 7’-nor-anhydrovinblastine or navelbine and first pharmacological and clinical results 134
3.5.3 The search for a new process to synthesize 7’-nor-anhydrovinblastine (vinorelbine) 144

Chapter 4. From the Pacific Yew (Taxus brevifolia) to the English Yew (Taxus baccata): Steps Towards the Discovery of Docetaxel (Taxotere®) 151

4.1. The common yew, Taxus baccata 152
4.1.1. Yews, botanics and toxicity 152
4.1.2. First phytochemical studies of the common yew (T. baccata) and other species of Taxus 155
4.2. From the Pacific yew, Taxus brevifolia, to Taxol®, an anti-cancer molecule with a new mechanism of action 159
4.2.1. Discovery of taxol, cytotoxic diterpene isolated from the Pacific yew 159
4.2.2. Taxol: a new mechanism of action and difficulties encountered during its development 162
4.3. Phytochemical studies carried out at the ICSN: discovery of 10-deacetylbaccatin III in the natural state (1980s) 166
4.3.1. Extraction and purification of T. baccata, monitoring the activity on tubulin 167
4.3.2. Isolation of 10-deacetylbaccatin III 169
4.3.3. Isolation of other taxanes and biological activity on tubulin 173
4.3.4. Study of the pharmacological properties of taxol at the ICSN and at the Faculté de Pharmacie in Grenoble .................. 176
4.4. Steps toward the first semisynthesis of 10-deacetyltaxol, of taxol and discovery of a highly active analog by the aminohydroxylation reaction. ................. 177
4.4.1. Chemical studies of 10-deacetylbaccatin III ............... 178
4.4.2. Studies on the esterification of 7, 10-ditroc-10-deacetylbaccatin III. Semisynthesis of cinnamic ester of 10-deacetylbaccatin III .................. 182
4.4.3. Functionalization of the cinnamic ester double bond: discovery of a compound (Oxy 1) more active than taxol. ........................................ 185
4.4.4. First semisynthesis of 10-deacetyltaxol and taxol. ............ 194
4.4.5. Earliest pharmacological studies of Oxy 1 (56 976 R.P.). .............. 197
4.5. Second semisynthesis of taxol by a convergent process .................. 198
4.5.1. First convergent semisynthesis of taxol ....................... 199
4.5.2. Other convergent semisynthesis and semisynthetic version of taxol approved by the FDA. .............. 201
4.6. A step toward the development of 56 976 R.P., which was to become Taxotere® .......................... 202
4.6.1. Large-scale extraction and purification of 10-deacetylbaccatin III .................. 203
4.6.2. Steps toward the convergent synthesis of 56 976 R.P. .................. 205
4.6.3. From pharmacological and clinical properties to market authorization for Taxotere® (56 976 R.P.) .............. 209

Conclusion .......................................................... 213

Bibliography ........................................................ 217

Index ................................................................. 245