Table of Contents

Foreword	xiii
Preface	xv
Chapter 1. Some General Points about SMAs	1
 1.1. Introduction	1 2 5 8 8 8
Chapter 2. The World of Shape-memory Alloys	11
 2.1. Introduction and general points 2.2. Basic metallurgy of SMAs, by Michel Morin 2.2.1. Copper-based shape-memory alloys 2.2.2. Cu-Zn-Al 2.2.3. Cu-Al-Ni 2.2.4. Cu-Al-Be 2.2.5. The phenomena of aging, stabilization and fatigue 2.2.6. Methods for copper-based SMA elaboration 2.2.7. Ti-Ni-based alloys 2.2.8. Ti-Ni alloy 2.2.9. Ti-Ni-X alloys 2.2.10. Elaboration 2.2.11. Shaping 2.2.12. Final heat treatments 2.2.13. Table comparing the physical and mechanical properties 	111 12 12 14 16 18 19 21 21 22 23 24 25 25 26

vi Shape-memory Alloys Handbook

2.2.14. Biocompatibility of SMAs	26
2.3. Measurements of phase transformation temperatures	27
2.4. Self-accommodating martensite and stress-induced martensite	28
2.5. Fatigue resistance	29
2.5.1. Causes of degradation of the properties	29
2.5.2. Fatigue of a Cu-Al-Be monocrystal	30
2.5.3. Results	30
2.6. Functional properties of SMAs	35
2.6.1. The pseudo-elastic effect	35
2.6.2. One-way shape-memory effect	37
2.6.3. Recovery stress	40
2.6.4. Double shape-memory effect: training	41
2.7. Use of NiTi for secondary batteries	42
2.8. Use of SMAs in the domain of civil engineering	42
Chapter 3. Martensitic Transformation	49
3.1. Overview of continuum mechanics	49
3.1.1. Main notations for vectors	49
3.2. Main notations for matrices	50
3.3. Additional notations and reminders	51
3.3.1. Unit matrices	51
3.3.2. Rotation matrix	51
3.3.3. Symmetric matrices	54
3.3.4. Positive definite symmetric matrices	54
3.3.5. Polar decomposition	55
3.4. Kinematic description	57
3.4.1. Strain gradient	57
3.4.2. Dilatation and strain tensors	58
3.4.3. Transformation of an element of volume or surface	
(see Figure 3.2)	60
3.5. Kinematic compatibility	61
3.6. Continuous theory of crystalline solids	62
3.6.1. Bravais lattices	63
3.6.2. Deformation of lattices and symmetry	64
3.6.3. Link between lattices and the continuous medium:	
Cauchy–Born hypothesis	65
3.6.4. Energy density in crystalline solids	66
3.7. Martensitic transformation	67
3.7.1. Introduction	67
3.7.2. Martensitic transformation: Bain matrix or	0,
transformation matrix	67
3.8 Equation governing the interface between two martensite	07
variants M_{\cdot}/M_{\cdot} or the "twinning equation"	70
and in the for the training equation	,0

Table of Contents vii

3.8.1. Cubic \rightarrow quadratic transformation	72
3.8.2. Cubic \rightarrow orthorhombic transformation	73
3.9. Origin of the microstructure	73
3.9.1. Simplified one-dimensional case	74
3.9.2. Simplified two-dimensional case	75
3.9.3. Three-dimensional case	76
3.10. Special microstructures	76
3.10.1. Austenite-martensite interface	76
3.10.2. Phenomenological theory of martensite	77
3.10.3. Crystallographic theory of martensite	80
3.11. From the scale of the crystalline lattice to the mesoscopic	
and then the macroscopic scale	84
3.11.1. Approach at the level of the crystalline lattice	85
3.11.2. Microscopic approach	86
3.11.3. Mesoscopic approach	86
3.11.4. Macroscopic approach	88
3.12. Linear geometric theory	88
3.12.1. Linearized kinematics	89
3.12.2. Linear geometric theory for phase transformation	91
3.12.3. Some microstructures and comparison	92
3.13. Chapter conclusion	95
Chapter 4. Thermodynamic Framework for the Modeling	
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials	97
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction	97 97
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws	97 97 98
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system	97 97 98 98
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative	97 97 98 98 99
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance	97 97 98 98 99 100
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance 4.2.4. Motion balance equation	97 97 98 98 99 100 101
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance 4.2.4. Motion balance equation 4.2.5. Energy balance: first law of thermodynamics	97 97 98 98 99 100 101 102
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance 4.2.4. Motion balance equation 4.2.5. Energy balance: first law of thermodynamics 4.2.6. Variation of entropy: second law of thermodynamics	97 97 98 98 99 100 101 102 103
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance 4.2.4. Motion balance equation 4.2.5. Energy balance: first law of thermodynamics 4.2.6. Variation of entropy: second law of thermodynamics 4.3. Constitutive laws	97 98 98 99 100 101 102 103 103
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance 4.2.4. Motion balance equation 4.2.5. Energy balance: first law of thermodynamics 4.2.6. Variation of entropy: second law of thermodynamics 4.3.1. Clausius-Duhem inequality	97 98 98 99 100 101 102 103 103 104
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance 4.2.4. Motion balance equation 4.2.5. Energy balance: first law of thermodynamics 4.2.6. Variation of entropy: second law of thermodynamics 4.3.1. Clausius-Duhem inequality	97 97 98 99 100 101 102 103 103 104
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance 4.2.4. Motion balance equation 4.2.5. Energy balance: first law of thermodynamics 4.2.6. Variation of entropy: second law of thermodynamics 4.3.1. Clausius-Duhem inequality 4.3.1. Introduction	97 97 98 99 100 101 102 103 103 104 109
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance 4.2.4. Motion balance equation 4.2.5. Energy balance: first law of thermodynamics 4.2.6. Variation of entropy: second law of thermodynamics 4.3.1. Clausius-Duhem inequality 4.3.1. Clausius-Duhem inequality 5.1. Introduction 5.2. Process of reorientation of the martensite variants in a monocrystal	97 97 98 99 100 101 102 103 103 104 109 109
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance 4.2.4. Motion balance equation 4.2.5. Energy balance: first law of thermodynamics 4.2.6. Variation of entropy: second law of thermodynamics 4.3.1. Clausius-Duhem inequality 4.3.1. Clausius-Duhem inequality 5.1. Introduction 5.2. Process of reorientation of the martensite variants in a monocrystal 5.2.1. Internal variable model of the thermomechanical behavior	 97 97 98 99 100 101 102 103 104 109 109 109
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance 4.2.4. Motion balance equation 4.2.5. Energy balance: first law of thermodynamics 4.2.6. Variation of entropy: second law of thermodynamics 4.3.1. Clausius-Duhem inequality 4.3.1. Clausius-Duhem inequality 5.1. Introduction 5.2. Process of reorientation of the martensite variants in a monocrystal 5.2.1. Internal variable model of the thermomechanical behavior of an SMA monocrystal	97 97 98 99 100 101 102 103 103 104 109 109 109
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance 4.2.4. Motion balance equation 4.2.5. Energy balance: first law of thermodynamics 4.2.6. Variation of entropy: second law of thermodynamics 4.3.1. Clausius-Duhem inequality 4.3.1. Clausius-Duhem inequality 5.1. Introduction 5.2. Process of reorientation of the martensite variants in a monocrystal 5.2.1. Internal variable model of the thermomechanical behavior of an SMA monocrystal 5.2.2. Experimental procedure and results obtained	97 97 98 99 100 101 102 103 103 104 109 109 109 111 113
Chapter 4. Thermodynamic Framework for the Modeling of Solid Materials 4.1. Introduction 4.2. Conservation laws 4.2.1. Concept of a material system 4.2.2. Concept of a particulate derivative 4.2.3. Mass balance 4.2.4. Motion balance equation 4.2.5. Energy balance: first law of thermodynamics 4.2.6. Variation of entropy: second law of thermodynamics 4.3.1. Clausius-Duhem inequality 4.3.1. Clausius-Duhem inequality 5.1. Introduction 5.2. Process of reorientation of the martensite variants in a monocrystal 5.2.1. Internal variable model of the thermomechanical behavior of an SMA monocrystal 5.2.2. Experimental procedure and results obtained 5.2.3. Modeling of the experiments	97 97 98 99 100 101 102 103 103 104 109 109 109 109 111 113 114

viii Shape-memory Alloys Handbook

5.3. Process of creation of martensite variants in a monocrystal:	
pseudoelastic behavior	118
5.3.1. Modeling the pseudoelastic behavior of the monocrystal	118
5.3.2. Traction curves	120
5.4. Prediction of the surfaces for the austenite \rightarrow martensite	
phase transformation	122
5.4.1 Case of a monocrystal	122
5.4.2 Case of a nolverystal	124
	127
Chapter 6. Phenomenological and Statistical Approaches for SMAs	129
6.1. Introduction	129
6.2. Preisach models	130
6.3. First-order phase transitions and Falk's model	132
6.3.1. Falk's model	132
6.3.2 Extension of Falk's model	136
6.3.3 Description of hysteresis loops	137
6.3.4 Phase domains with moving boundaries	138
6.3.5 Properties of the model and validation	1/1
6.4. Constitutive framework of the homogenized energy model	1/12
6.4.1 One dimensional mesosconic model	142
6.4.2 Thermal change	144
6.4.2 Magrasappia model	140
6.4.5. Macroscopic model	149
6.4.4. Performance of the model and material characterization	150
6.5. Conclusion	154
Chapter 7. Macroscopic Models with Internal Variables	157
7.1. Introduction	157
7.2. R_I model	159
7.2.1. Reversible R model	159
7.2.2 B _T model with a hysteresis loop	162
7.2.3 Extension to reversible phase transformation:	102
austenite $\rightarrow R$ phase for NiTi	166
7.2.4 Multiavial isothermal behavior	168
7.3 Anisothermal expansion	173
7.3.1 Kinetics of phase transformation or reorientation	176
7.3.2 Criticism of the R_{-} approach	10
7.5.2. Childishi of the n_L approach	101
7.4.1 Introduction	101
7.4.2 Chemisky at all's model	101
7.4.2. Chemisky $et at.$ s model \dots π	101
7.4.5. Keny and Bhauacharya's model	193
7.4.4. Internal variable model taking account of initiation, reorientation	100
	198
/.4.5. Certain constraints on simulation and modeling	204

Table of Contents ix

7.4.6. Certain ingredients of the model	206
7.4.7. Traction and compression for an isotropic material	213
7.4.8. Pure shearing of an isotropic material	214
7.4.9. Examination of the parameters for a uniaxial	
extension combined with shearing	215
7.4.10. Digital implantation	220
7.5. Elastohysteresis model: formalism and digital implantation	223
7.5.1. Experimentally-observed behaviors for shearing and	
traction/compression	223
7.5.2. Elasto-hysteresis model	223
7.5.3. Illustrations	229
7.6. Conclusion	233
Chapter 8. Design of SMA Elements: Case Studies	235
8.1 Introduction	235
8.2 "Strength of materials"-type calculations for beams subject	200
to flexion or torsion	235
8.2.1 Beam with a rectangular cross-section subject	200
to pure flexion: theoretical study	235
8.2.2. Experimental and theoretical validation	241
8.2.3. Solving pure torsion problem: relation between the twisting	
torque C and the unitary angle of torsion α	242
8.3. Elements of calculations for SMA actuators	245
8.3.1. Stress/position diagram: temperature parameterization	245
8.3.2. Work provided depending on the nature of the loading	248
8.3.3. Torsion of a cylindrical wire	248
8.3.4. Flexion of a beam	248
8.3.5. Comparison of the different modes of loading	249
8.3.6. A few remarks about the duration of heating and	
cooling of SMAs	250
8.4. Case studies	251
8.4.1. Study of the flexion of a prismatic bar subjected	
to a point force	251
8.4.2. Slender tube subject to twisting torques	252
8.4.3. Study of a "parallel" hybrid structure	254
8.4.4. Study of a "series" hybrid structure	256
8.4.5. Design of an application: breakage of a mechanical link	257
Chapter 9. Behavior of Magnetic SMAs	261
9.1. Introduction	261
9.2. Some models of the thermo-magneto-mechanical	
behavior of MSMAs	262
9.2.1. O'Handley and Murray <i>et al.</i> 's model	262

x Shape-memory Alloys Handbook

9.2.3. Likhachev and Ullakko's model 26 9.2.4. Original approaches 26 9.2.5. Overlaps between these approaches 26 9.3. Crystallography of Ni-Mn-Ga 26 9.3.1. The different phases and variants 26 9.3.2. Rearrangement and transformation 26 9.3.3. Calculations of microstructures 26 9.3.3. Calculations of microstructures 26 9.4. Model of the magneto-thermo-mechanical behavior 26 9.4. Model of the magneto-thermo-mechanical bolavior 27 9.4.1. Expression of the Gibbs free energy associated 27 9.4.2. Choice of the representative elementary volume 27 9.4.3. Expression of chemical energy 27 9.4.4. Expression of mechanical energy 27 9.4.5. Expression of mechanical energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.10. Heat balance equation 29 9.5. Conclusion 29 <	9.2.2. Micromagnetism	263
9.2.4. Original approaches 26 9.2.5. Overlaps between these approaches 26 9.3. Crystallography of Ni-Mn-Ga 26 9.3.1. The different phases and variants 26 9.3.2. Rearrangement and transformation 26 9.3.3. Calculations of microstructures 26 9.4. Model of the magneto-thermo-mechanical behavior 26 9.4. Model of the magneto-thermo-mechanical behavior 27 9.4.1. Expression of the Gibbs free energy associated 27 9.4.2. Choice of the representative elementary volume 27 9.4.3. Expression of chemical energy 27 9.4.4. Expression of thermal energy 27 9.4.5. Expression of magnetic energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.2. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2.1. Basic modes of fracture and stress intensity factors 29	9.2.3. Likhachev and Ullakko's model	263
9.2.5. Overlaps between these approaches 26 9.3. Crystallography of Ni-Mn-Ga 26 9.3.1. The different phases and variants 26 9.3.2. Rearrangement and transformation 26 9.3.3. Calculations of microstructures 26 9.4. Model of the magneto-thermo-mechanical behavior 27 9.4. Model of the magneto-thermo-mechanical behavior 27 9.4.1. Expression of the Gibbs free energy associated 27 9.4.2. Choice of the representative elementary volume 27 9.4.3. Expression of chemical energy 27 9.4.4. Expression of mechanical energy 27 9.4.5. Expression of magnetic energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane el	9.2.4. Original approaches	263
9.3. Crystallography of Ni-Mn-Ga 26 9.3.1. The different phases and variants 26 9.3.2. Rearrangement and transformation 26 9.3.3. Calculations of microstructures 26 9.4. Model of the magneto-thermo-mechanical behavior 27 9.4. Model of the magneto-thermo-mechanical behavior 27 9.4.1. Expression of the Gibbs free energy associated 27 9.4.2. Choice of the representative elementary volume 27 9.4.3. Expression of chemical energy 27 9.4.4. Expression of mechanical energy 27 9.4.5. Expression of mechanical energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) <	9.2.5. Overlaps between these approaches	264
9.3.1. The different phases and variants 26 9.3.2. Rearrangement and transformation 26 9.3.3. Calculations of microstructures 26 9.4. Model of the magneto-thermo-mechanical behavior 27 of a monocrystal of magnetic shape-memory alloy 27 9.4.1. Expression of the Gibbs free energy associated 27 9.4.2. Choice of the representative elementary volume 27 9.4.3. Expression of chemical energy 27 9.4.4. Expression of chemical energy 27 9.4.5. Expression of mechanical energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Mushelishvili formulae) 29	9.3. Crystallography of Ni-Mn-Ga	265
9.3.2. Rearrangement and transformation 26 9.3.3. Calculations of microstructures 26 9.4. Model of the magneto-thermo-mechanical behavior 27 of a monocrystal of magnetic shape-memory alloy 27 9.4.1. Expression of the Gibbs free energy associated 27 9.4.2. Choice of the representative elementary volume 27 9.4.3. Expression of chemical energy 27 9.4.4. Expression of thermal energy 27 9.4.5. Expression of magnetic energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30	9.3.1. The different phases and variants	265
9.3.3. Calculations of microstructures 26 9.4. Model of the magneto-thermo-mechanical behavior of a monocrystal of magnetic shape-memory alloy 27 9.4.1. Expression of the Gibbs free energy associated with magneto-thermo-mechanical loading 27 9.4.2. Choice of the representative elementary volume 27 9.4.3. Expression of chemical energy 27 9.4.4. Expression of thermal energy 27 9.4.5. Expression of mechanical energy 27 9.4.6. Expression of magnetic energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 20 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29	9.3.2. Rearrangement and transformation	266
9.4. Model of the magneto-thermo-mechanical behavior of a monocrystal of magnetic shape-memory alloy 27 9.4.1. Expression of the Gibbs free energy associated with magneto-thermo-mechanical loading 27 9.4.2. Choice of the representative elementary volume 27 9.4.3. Expression of chemical energy 27 9.4.4. Expression of thermal energy 27 9.4.5. Expression of mechanical energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.4. Mixed Mode I + II: analytical	9.3.3. Calculations of microstructures	267
of a monocrystal of magnetic shape-memory alloy 27 9.4.1. Expression of the Gibbs free energy associated 27 9.4.2. Choice of the representative elementary volume 27 9.4.3. Expression of chemical energy 27 9.4.4. Expression of thermal energy 27 9.4.5. Expression of mechanical energy 27 9.4.6. Expression of mechanical energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.3.1. Mode I 31 10.3.2. Mode III 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces	9.4. Model of the magneto-thermo-mechanical behavior	
9.4.1. Expression of the Gibbs free energy associated 27 9.4.2. Choice of the representative elementary volume 27 9.4.3. Expression of chemical energy 27 9.4.4. Expression of thermal energy 27 9.4.5. Expression of thermal energy 27 9.4.6. Expression of magnetic energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3.1. Mode I 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of t	of a monocrystal of magnetic shape-memory alloy	270
with magneto-thermo-mechanical loading 27 9.4.2. Choice of the representative elementary volume 27 9.4.3. Expression of chemical energy 27 9.4.4. Expression of thermal energy 27 9.4.5. Expression of mechanical energy 27 9.4.6. Expression of mechanical energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3.1. Mode I 31 10.3.3. Mode III<	9.4.1. Expression of the Gibbs free energy associated	
9.4.2. Choice of the representative elementary volume 27 9.4.3. Expression of chemical energy 27 9.4.4. Expression of thermal energy 27 9.4.5. Expression of magnetic energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfa	with magneto-thermo-mechanical loading	271
9.4.3. Expression of chemical energy 27 9.4.4. Expression of thermal energy 27 9.4.5. Expression of magnetic energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfac	9.4.2. Choice of the representative elementary volume	271
9.4.4. Expression of thermal energy 27 9.4.5. Expression of mechanical energy 27 9.4.6. Expression of magnetic energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 9.5. Conclusion 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4.	9.4.3. Expression of chemical energy	273
9.4.5. Expression of mechanical energy 27 9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	9.4.4. Expression of thermal energy	274
9.4.6. Expression of magnetic energy 27 9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	9.4.5. Expression of mechanical energy	274
9.4.7. General expression of the free energy 27 9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 9.5. Conclusion 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	9.4.6. Expression of magnetic energy	275
9.4.8. Clausius-Duhem inequality 27 9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 9.5. Conclusion 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3. Prediction of the phase transformation surfaces around the crack tip (no curvature at the crack tip) 31 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	9.4.7. General expression of the free energy	278
9.4.9. Kinetics of phase transformation or reorientation 28 9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.3. Prediction of the phase transformation surfaces around the crack tip (no curvature at the crack tip) 31 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	9.4.8. Clausius-Duhem inequality	279
9.4.10. Heat balance equation 28 9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull" actuator 29 9.5. Conclusion 29 Chapter 10. Fracture Mechanics of SMAs 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.3. Prediction of the phase transformation surfaces around the crack tip (no curvature at the crack tip) 31 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	9.4.9. Kinetics of phase transformation or reorientation	281
9.4.11. Identification of the parameters 28 9.4.12. Application: creation of a "push/pull " actuator 29 9.5. Conclusion 29 9.5. Conclusion 29 Chapter 10. Fracture Mechanics of SMAs 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3. Prediction of the phase transformation surfaces around the crack tip (no curvature at the crack tip) 31 10.3.1. Mode I 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	9.4.10. Heat balance equation	284
9.4.12. Application: creation of a "push/pull " actuator	9.4.11. Identification of the parameters	285
9.5. Conclusion 29 Chapter 10. Fracture Mechanics of SMAs 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3. Prediction of the phase transformation surfaces around the crack tip (no curvature at the crack tip) 31 10.3.1. Mode I 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	9.4.12. Application: creation of a "push/pull" actuator	292
Chapter 10. Fracture Mechanics of SMAs 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3. Prediction of the phase transformation surfaces around the crack tip (no curvature at the crack tip) 31 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	9.5. Conclusion	293
Chapter 10. Fracture Mechanics of SMAs 29 10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3. Prediction of the phase transformation surfaces around the crack tip (no curvature at the crack tip) 31 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31		
10.1. Introduction 29 10.2. The elastic stress field around a crack tip 29 10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3. Prediction of the phase transformation surfaces around 31 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation 31 10.3.4. Prediction of the phase transformation surfaces 31	Chapter 10. Fracture Mechanics of SMAs	295
10.2. The elastic stress field around a crack tip	10.1. Introduction	295
10.2.1. Basic modes of fracture and stress intensity factors 29 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3. Prediction of the phase transformation surfaces around the crack tip (no curvature at the crack tip) 31 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	10.2. The elastic stress field around a crack tip	296
10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae) 29 10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3. Prediction of the phase transformation surfaces around the crack tip (no curvature at the crack tip) 31 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	10.2.1. Basic modes of fracture and stress intensity factors	296
Kolosov-Muskhelishvili formulae)2910.2.3. Westergaard stress functions method3010.2.4. Solutions by the Westergaard function method3010.3. Prediction of the phase transformation surfaces around3110.3.1. Mode I3110.3.2. Mode II3110.3.3. Mode III3110.3.4. Mixed Mode I + II: analytical prediction of the transformation3110.4. Prediction of the phase transformation surfaces31	10.2.2. Complex potential method for plane elasticity (the	
10.2.3. Westergaard stress functions method 30 10.2.4. Solutions by the Westergaard function method 30 10.3. Prediction of the phase transformation surfaces around 31 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation 31 10.3.4. Prediction of the phase transformation surfaces 31	Kolosov-Muskhelishvili formulae)	297
10.2.4. Solutions by the Westergaard function method 30 10.3. Prediction of the phase transformation surfaces around 31 the crack tip (no curvature at the crack tip) 31 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation 31 10.4. Prediction of the phase transformation surfaces 31	10.2.3. Westergaard stress functions method	301
10.3. Prediction of the phase transformation surfaces around 31 the crack tip (no curvature at the crack tip) 31 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation 31 10.4. Prediction of the phase transformation surfaces 31	10.2.4. Solutions by the Westergaard function method	304
the crack tip (no curvature at the crack tip) 31 10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	10.3. Prediction of the phase transformation surfaces around	
10.3.1. Mode I 31 10.3.2. Mode II 31 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	the crack tip (no curvature at the crack tip)	311
10.3.2. Mode II 31- 10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	10.3.1. Mode I	314
10.3.3. Mode III 31 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces 31	10.3.2. Mode II	314
10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces 31 10.4. Prediction of the phase transformation surfaces	10.3.3. Mode III	317
surfaces	10.3.4. Mixed Mode I + II: analytical prediction of the transformation	
10.4. Prediction of the phase transformation surfaces	surfaces	318
=	10.4. Prediction of the phase transformation surfaces	
around the crack tip (curvature ρ at the crack tip)	around the crack tip (curvature ρ at the crack tip)	322

Table of Contents xi

10.4.1. Applications	324
10.5. Some experimental results about fracture of SMAs	325
10.6. Problem of delamination between a SMA and an elastic	220
sond	329
Chapter 11. General Conclusion	337
11.1. Resolved problems	337
11.2. Unresolved problems	338
11.3. Suggestions for future directions	339
Appendix 1. Intrinsic Properties of Rotation Matrices (see Chapter 3)	341
A1.1. Characterization of rotations	342
Appendix 2. "Twinning Equation" Demonstration (see Chapter 3)	345
A2.1. Question	345
A2.2. Solution	345
Annandix 3 Calculation of the Parameters 2 – n and O from the	
"Twinning " Equation (see Chapter 3)	349
A3.1. Problem	349
A3.2. Statement	349
A3.3. Solution	350
A3.3.1. Case 1	353
A3.3.2. Case 2	353
A3.3.3. Case 3	353
A3.3.4. Case 4	354
Appendix 4. "Twinned" Austenite/Martensite Equation (see Chapter 3)	355
A4.1. Proposition 1	355
A4.2. Proposition 2	355
A4.3. Theorem	356
Bibliography	359
Index	377