
Chapter 6 

Modeling of Thin and Line Regions 

6.1. Introduction  

Some devices such as the tank and accessories of a transformer, ship hulls, air-
gaps in machines, contactors or magnetic recording heads, shielding, etc. are mainly 
made up of sheet or line type parts of thin air-gaps or cracks. Modeling these parts 
using traditional finite volume elements used in 3D software is tiresome, and even 
impossible. Moreover, the skin effect in ferromagnetic materials increases the 
difficulties of meshing eddy current problems in under sinusoidal conditions. To 
cope with these difficulties, it is possible to use special “shell elements” for the 
modeling of magnetic or thin conducting regions, “surface impedance” elements for 
the modeling of conducting regions having a low skin depth, etc. This chapter 
presents these special elements. 

6.2. Different special elements and their interest  

We call a “thin region”, an region which has a low thickness compared to its 
other dimensions, and “neighbor regions”, the external regions which have a 
common border with the thin region. 

Electrotechnical devices are also made of line type parts such as clamping 
beams, bus bars of transformers, windings, etc. 

                                   
Chapter written by Christophe GUÉRIN. 



246     The Finite Element Method for Electromagnetic Modeling 

Meshing thin regions and line regions using an automatic mesh generator, which 
generates tetrahedral elements in 3D (and triangular elements in 2D), result, because 
of the low thicknesses or weak sections, in a very significant number of elements or 
in elements which are too long. Some problems are difficult, even impossible, with 
current computing tools. The tetrahedral or triangular finite elements can have low 
accuracy when they are too long. 

An alternative to this difficulty of meshing the thin regions is the use of a 
mapped mesh generator or by extrusion which generates hexahedral or prismatic 
elements in 3D (quadrangular in 2D). The latter withstands a strong lengthening, 
which is not easy and takes time. The other way based on the use of an automatic 
mesh generator, consists of using special elements which allow the thin regions to 
be modeled by surfaces and line type regions to be modeled by lines. Thus, the 
description of the geometry and the mesh is largely simplified. The physical 
phenomena which occur inside these regions are taken into account in the integral 
formulation by surface or linear terms. The average surface (called Γ thereafter) 
which will describe a thin region will pass through the middle of this region. 

 

Figure 6.1. Modeling of a thin region and a line type region with special elements 

For some magnetoharmonic problems, the solid conductors are characterized by 
a strong skin effect. When the skin depth is small compared to the characteristic 
dimension of the conductor with a material with linear properties, the physical 
quantities such as the current or the magnetic field have a known exponential decay. 
The meshing of the conducting region with traditional volume elements must consist 
of elements which are smaller than the size of the skin depth. This situation will 
lead, for some problems, to a very high number of elements. Special surface 
elements, using the concept of surface impedance, which describe the surface of the 
conducting region, allow the exponential decay to be taken into account. They also 
allow the magnetic field to only be calculated on the surface and outside. The 
problems which are characterized with a low skin depth and which can require the 
use of such elements are, for example, problems of induction heating and problems 
relating to the transformers (tanks). Let us now consider a magnetoharmonic 
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problem where there are thin regions of low thickness in which eddy currents flow. 
When the skin depth is lower than the thickness of the thin region and its material is 
linear, the variation of the quantities along the thickness is exponential. 

The common characteristic of special elements is to suppose known the variation 
of the physical quantities along the thickness of the thin region or the skin depth. 
We call “shell elements” the surface elements of a thin region to be described (see 
Figure 6.2). 

Constant quality
(shell element)

Hyperbolic sinus variation
(shell element)

 

Figure 6.2. Various types of special surface elements ranked according  
to the variation of the physical quantities along the thickness 

We can also rank the special elements according to types of unknown variables 
used by the associated formulations (fields, vector potentials, scalar, electric, 
magnetic). According to the type of physical problem that represents a thin region, 
and according to the unknown variable type, we have two types of shell elements: 
elements “without potential jump” and elements “with potential jump”. If the 
potential is constant through the thickness, the element is known as “without 
potential jump”, otherwise, it is known as “with potential jump” and the unknown 
variables are duplicated in each node of the element (see Figure 6.3). 
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Figure 6.3. Element without potential jump and element with potential jump 



248     The Finite Element Method for Electromagnetic Modeling 

Let us take the example of a thin plate consisting of a ferromagnetic material of 
high permeability. The plate is surrounded by air. The induction and the field in this 
plate are mainly tangent since the flux is channeled by it. If the total scalar potential 
is used, the magnetic field is written H = –grad φ, the equipotential surfaces are 
perpendicular to the surface of the plate. Thus, the potential at point A on a side of 
the plate will be equal to the potential at point B which is opposite (see Figure 6.4). 

 

Figure 6.4. Constant potential φ through the thin region 

The modeling of the plate will require only one special element without a 
potential jump [BRU 91]. Let us note that in scalar potential, the continuity of the 
tangential component of the magnetic field is exactly assured by the nodal finite 
elements. It can be shown that the use of the magnetic vector potential requires an 
element with a potential jump for the modeling of the plate. On the other hand, for 
the dual problem, the thin air-gap of a magnetic circuit, where the induction is 
mainly normal, a special element with vector potential could be without jump and an 
element in scalar potential will necessarily be with potential jump [NAK 90]. The 
nodal finite elements exactly ensure the normal component of the induction in 
vector potential. We can extrapolate these observations for the other magnetostatic, 
magnetoharmonic, transient magnetic formulations, etc. which comprise various 
types of thin regions. They are, for example, a magnetic circuit air-gap, a 
ferromagnetic plate in the air, a conducting plate in the air, a crack of a low 
thickness slightly conducting in a conductor, etc. The following table indicates, for 
the potentials used in the thin regions and the neighboring regions, if the special 
element requires a potential jump or not. 

 
The use of special elements for the modeling of thin regions has other 

advantages: 

– thickness e of the thin region which can be changed without modifying the 
geometry or the mesh in order to carry out parametric studies easily according to 
this thickness e; 

– the time of calculation which is reduced compared to the use of traditional 
volume elements [NAK 90]. 
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 Magnetostatics Magnetodynamics 

 Ferromagnetic 
thin sheet Air gap Conducting thin 

sheet Crack 

 H
 B

 

 B 

 

H
 

 μe << μ μe >> μ σe >> σ σe << σ 

Formulations in H φ, φr Tφ H 

φ, φr, Tφ H Without jump Jump Jump Without jump 

Formulations in B A AV, A*, E 

A, AV, A*, E Jump Without jump Without jump Jump 

Table 6.1. Element with jump and element without jump of the unknown variable.  
μe, σe: permeability and conductivity of the thin region, μ, σ:  permeability  

and conductivity of the neighboring regions 

6.3. Method for taking into account thin regions without potential jump 

The method presented here allows any type of thin region to be described with 
any nodal or edge approximation formulation by surface elements without potential 
jump [BRU 91]. This method is valid in the case of thin regions where the potentials 
are of constant thickness, i.e. in which the physical quantities, such as the magnetic 
field and current density, do not vary with the thickness. Let us denote by e, the 
thickness of the thin region. The process of obtaining the formulation for the thin 
region consists of decomposing the volume integrals of the volume formulation into 
a line integral along thickness e and a surface integral along surface Γof the thin 
region.  

( )∫ ∫∫ ΓΩ Γ=Ω ddzFdF e  [6.1] 

where F is the integrating term of the integrals of the volume region formulation. 

As the potentials and the physical quantities are considered constant along the 
thickness, the linear integral is obvious. It is worth eF. Thus, the terms of the finite 
elements formulation for the thin region are obtained by transforming the terms of 
the formulation for volume elements into surface integrals, by multiplying them by 
thickness e and using the shape functions of surface elements instead of those of 
volume elements. 



250     The Finite Element Method for Electromagnetic Modeling 

We take, as an example, the formulation for the total magnetic scalar potential. 
The linear system for this formulation for volume regions is written (see [BRU 91]): 

[ ][ ] [ ]CA =φ  [6.2] 

with [ ] [ ]∫Ω Ωμ⋅−= dwgradwgradA jtiij ,  

[ ] ∫Ω Ω⋅−= dBwgradC tii  

where B is the induction. 
 
The matrix terms for the formulation of thin regions can be written:  

– for  :        μ    t
s sAij e grad wi grad wj d

Γ
⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ − ⋅ Γ∫ ; 

– for :             t
sCi e grad wi B dsΓ⎡ ⎤⎣ ⎦ − ⋅∫ . 

6.4. Method for taking into account thin regions with potential jump  

The idea is to consider a surface element with potential jump as a prismatic 
element. We make the assumption that the potential is considered linear in the 
direction of the element thickness. Thus, quantities such as the magnetic field are 
supposed to be constant in the thickness. The prismatic element has a first order 
interpolation function along the thickness and any order along the other directions. 
We will integrate the interpolation functions along the thickness in order to obtain 
the formulation of an element with potential jump [SUR 86] [POU 93]. Two valid 
methods for a nodal approximation are successively presented [GUE 94a]. The 
formulation in total scalar potential is taken as an example for the application of 
these methods. In the first method, the integrals of the shape functions along the 
thickness are calculated in an analytical way before assembly and any numerical 
processing. In the second method, which is a more general approach, the integration 
is performed numerically, at the time of integration of the matrix terms in the 
matrix. 

 
We assume here that the elements with potential jump have their nodes 

duplicated. The duplicated nodes are at the same coordinates as those of the origin. 
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6.4.1. Analytical integration method   

We consider a reference coordinate system related to the element. Let us write 
x,y for the tangential curvilinear coordinates on average surface Γ of the element 
and z for the one normal on the surface of the element. We must consider 
curvilinear coordinates x,y,z of the real element expressed in the local reference 
coordinate system and not those of the reference element, in order to take into 
account the thickness of the element. Thickness e is assumed to be constant in each 
element. The magnetic scalar potential φ is interpolated using the approximation 
functions of w’i of the prismatic element which has n’ = 2 n nodes: 

( ) i
n

i
i zyxw φφ ,,'

'

1
∑
=

=  [6.3] 

Functions w’i and w’i+n differ only by the terms according to z, which allows the 
Lagrangian functions wi(x,y) to be defined. These functions are the surface 
interpolation functions on average surface Γ and λ1(z) and λ2(z) which are the 
Lagrange interpolation functions in the thickness, i.e., those of a nodal line element 
of the 1st order with 2 nodes of length e. The potential is written: 
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1
1λ , ( )e
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1

2λ  and niiii +== φφφφ 21 , ,   i ∈ [1,n] 

Indices “1” and “2” refer respectively to sides “1” and “2” of the element with 
potential jump. Thin region Ω is described by the formulation in total scalar 
potential. The volume terms corresponding to the thin region are written in their 
discrete form: 
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We are interested now in n first equations which correspond to the nodes on side 
“1” of the element. They are written: 
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The other n equations which correspond to the nodes on side “2” of the element 
are obtained from the first n equations by permuting potentials φj1 and φj2. The 
volume integral on volume Ω is decomposed in a surface integral on Γ and an 
integral along z (F is the integrating term of [6.6]): 

∫ ∫∫ Γ −Ω Γ⎟
⎠
⎞⎜

⎝
⎛=Ω ddzFdF e

e
2/
2/  [6.7] 

After integration and passage into the non-discretized integral form along z, the 
total formulation is thus written, using the surface gradient operators: 
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The system of equations above is symmetric. The second equation can be 
deduced from the first by permuting indices “1” and “2”. 

6.4.2. Numerical integration method 

Unlike the previous method where an analytical integration was carried out, the 
integration along the surface and along the thickness is performed numerically, 
using the Gauss method, at the moment of integration of the matrix terms into the 
matrix, as for a volume element. We must consider the local coordinates u,v,w on 
the reference element. The approximation functions of the surface element with 
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potential jump are calculated as for a prismatic element: the product of the 
approximation functions of a surface element without potential jump along Γ with 
those of a 2-node line element along the thickness is produced: 

wi (u,v,w) = wsj (u,v) . wℓk (w) , i ∈ [1 , n], j ∈ [1 , ns], k ∈ [1 , 2] 

where wsj (u,v) (with j ∈ [1 , ns]) are the shape functions of the surface element, 
wℓk (w) (with k ∈ [1 , 2]) are those of the line element, ns is the number of nodes of 
the surface element and n = 2 ns is the number of nodes of the surface element with 
potential jump. The derivative of functions wi with respect to the local coordinates 
are written: 
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We must now express the Jacobian matrix [J] 3 × 3 of the transformation of the 
real element with potential jump to the reference element. Let [J1] be the 2×3 matrix 
formed by the first two lines of [J], and [J2] be the 1×3 matrix formed by the third 
line of [J]. Matrix [J1] is calculated as follows: 
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Figure 6.5. Transformations of J1 and J2 

[J1] is in fact the matrix of the transformation of the real surface element without 
potential jump, into the reference surface element without  potential jump. [J2] is the 
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matrix of the transformation of the real line element into the reference line element 
(see Figure 6.5). Let nu and nv be two orthonorms, at coordinates (u, v) in reference 
coordinate system (O,u,v) of the reference element. Vector nu, respectively nv, is 
parallel to vector Ou, respectively Ov. In reference coordinate system (O,x,y,z) of 
the real element, they are two tangential orthogonal vectors on the surface of the 
surface element point (x (u,v), y (u,v), z (u,v)). Matrix [J1] is formed of the two 
transposed vectors nu and nv. Let nw be the normal unit vector on the surface. 
Matrix [J2] is formed by the transposed vector nw multiplied by the half thickness e 
of the thin region, as indicated below: 
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In [6.12] T
Wn is multiplied by e/2, as the length of the line element is worth e in 

the real reference coordinate system (O, x, y, z) and is worth 2 in the reference 
coordinate system of the reference element (O, u, v, w). The polynomial derivatives 
with respect to the global coordinates (x, y, z) are given by: 
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The general term Aij of the linear system matrix corresponding to the 
formulation in total scalar potential is written like an integral on the real element: 

( ) lse

n

j
jj

T
ie dedewgradwgrad

ls
∫ ∑∫∫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅

=1
φμ  [6.14] 

After passage of the global coordinates to the local coordinates, this term 
becomes: 
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The integration on the element is carried out using the Gaussian-quadrature 
method. The functions which are integrated along the thickness are second-order 
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polynomials of the form ( )( )e
z

e
z ±± 2

1
2
1 . Two Gauss points lead to an exact 

integration of these functions, at least except for the numerical errors, the Gaussian-
quadrature method integrating exactly a polynomial of order 2m-1 with m points of 
integration. 

The method presented here is general and easy to implement. In fact, it applies to 
any formulation: the integration and the assembly of the surface element with 
potential jump are performed in the software in a similar way to the integration and 
the assembly of a traditional volume element. The difference in treatment between 
the two types of elements lies only in the retrieval of the interpolation functions and 
derivatives of these functions with respect to the coordinates: for a surface element 
with potential jump, the functions of the line element and those of the surface 
element are combined. 

6.5. Method for taking thin regions into account  

The method presented here is similar to the method described in section 6.3 for 
taking into account thin regions without potential jump. It makes it possible to 
describe any type of line region with any formulation with nodal or edge 
interpolation by line elements. This method is valid in the case of line regions where 
the potentials are constant in the section, i.e. in which the physical quantities, such 
as the magnetic field and current density, do not vary in the section. The method is 
deduced from the one described in section 6.3, by considering section s of the line 
region instead of thickness e of the thin region [BRU 91]. The formulation for the 
line region consists of breaking up the volume integrals of the volume formulation 
into a surface integral along section s and a linear integral along line λ of the line 
region.  

( )∫ ∫∫ Γ=ΩΩ λ ddzFdF s  [6.16] 

where F is the integrating term of the integrals of the formulation for volume 
regions. As the potentials and the physical quantities are considered constant along 
the thickness, the surface integral is obvious. It has a value sF. Thus, the terms of 
the finite element formulation for the line region are obtained by transforming the 
terms of the formulation for volume elements into line integrals, by multiplying 
them by section s and by using the shape functions of the line elements instead of 
those for volume elements. For example, for the formulation in total magnetic scalar 
potential of section 6.3, the matrix terms for the formulation for line regions are 
written: 
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– for [ ]             :  μt
ij i jA s grad w grad w dλ λ⎡ ⎤ ⋅⎣ ⎦ − ∫ ; 

– for :           i iC s grad w B d
λ

λ⎡ ⎤ ⋅⎣ ⎦ − ∫ . 

6.6. Thin and line regions in magnetostatics  

6.6.1. Thin and line regions in magnetic scalar potential formulations  

6.6.1.1. Thin and line regions without potential jump  

Since the surface or line elements are without potential jump, we take into 
account only the surface gradients in thin or line regions without potential jump in 
magnetic scalar potential formulations. The magnetic scalar potentials make it 
possible to take into account the regions in which fields H and B are mainly tangent 
with the thin or line region. The permeable regions and regions with tangent 
magnetizations can then be taken into account [BRU 91]. The surface and line 
formulations without potential jump are obtained from the volume formulation 
thanks to the methods described in sections 6.3 and 6.5. 

6.6.1.2. Thin regions with potential jump  

In thin regions with potential jump in scalar potential formulations, fields H and 
B can have any direction [GUE 94a]. Fields H and B must be constant in the 
thickness of the region. Such regions thus make it possible to describe thin air-gaps, 
permeable regions, as well as regions with magnetization of any direction. The 
surface formulation with potential jump is obtained from the volume formulation 
thanks to the method described in section 6.4. 

6.6.1.3. Air-gap edges in magnetic scalar potentials  

When a magnetic circuit with a thin air-gap is described with magnetic scalar 
potentials, there is a potential jump on all the surface of the air-gap, which is 
prolonged in the air, beyond the edge. When this air-gap is described by a thin 
region with potential jump, this thin region must be prolonged in the air, until the 
potential jump is assumed to be negligible. On the edge of the thin region of the 
prolonged air-gap, the degrees of freedom on the two sides are then confounded 
(φ

1 = φ
2
) [GUE 94a]. 
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6.6.1.4. Example: magnetic circuit with air-gap  

 Air-gap 

  

Figure 6.6. Magnetic circuit with thin air-gap in magnetic scalar potential  
(reduced in the air and the air-gap, total in the magnetic circuit).  

On the right: isovalues of induction on the vertical symmetry plane 

6.6.2. Thin and line regions in magnetic vector potential formulations  

6.6.2.1. Thin and line regions without potential jump  

Thin regions without potential jump in a magnetic vector potential formulation 
make it possible to take into account the surface currents (layers) and the thin air-
gaps, and the line regions to take into account the linear currents [NAK 90], [BRU 
91]. The surface and line formulations without potential jump are obtained from the 
volume formulation thanks to the methods described in sections 6.3 and 6.5. 

6.6.2.2. Thin and line regions with potential jump  

In thin regions with potential jump in nodal vector potential formulation, fields 
H and B can have any direction. Fields H and B must be constant in the thickness of 
the region. Such regions then make it possible to describe thin magnetic regions, 
thin air-gaps or surface currents (layers) [GUE 94a]. The surface formulation with 
potential jump is obtained from the volume formulation thanks to the method 
described in section 6.4. 

6.7. Thin and line regions in magnetoharmonics  

In magnetoharmonics, for eddy current problems, special elements are used in 
the following cases:  

– solid conducting regions where the skin effect is strong: the skin depth is much 
lower than characteristic dimension of the thin region; 
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–  conducting thin regions. Several cases can arise depending on whether the 
skin depth is higher or lower than the thickness of the thin region; 

– conducting line regions; 

– slightly conducting or insulating thin regions in a solid conducting region. 

6.7.1. Solid conducting regions presenting a strong skin effect  

6.7.1.1. The surface impedance condition  

For a linear, homogenous and isotropic material, the skin depth in the conductors 
is calculated by: 

( )σωμδ /2=  [6.17]
 

Meshing difficulties appear when skin depth δ becomes smaller compared to the 
characteristic dimension of the solid conductors to be modeled. This situation occurs 
when either the frequency, permeability or resistivity is high. Surface impedance Zs 
connects the tangential component to the surface of the conductor of the magnetic 
field H to the tangential component of the electric field E by the following relation: 

( )HnnZEn s ××=×  [6.18] 

where n is the unit vector normal at the surface and outgoing from the conducting 
region. In order to obtain a first expression of the surface impedance, we must 
consider the problem of a plate with an infinite thickness subjected to a uniform 
sinusoidal field parallel with the side of the plate which is composed of a linear 
material. This one-dimensional problem is solved in [STO 74]. The complex 
impedance found is constant, i.e. independent of the value of the field. It will be 
called “surface impedance in the one-dimensional (or 1D) approximation”:  
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Figure 6.7. Plate of infinite thickness in a uniform field 

This surface impedance associated with the finite element method is used on any 
geometries and not only plane ([KRA 88], for example). In 2D, a formulation in 
vector potential using the 1D approximation can be used [HOO 85]. In 3D, the 
magnetic scalar potential is generally used as state variable [GUE 94a], sometimes 
the magnetic vector potential A associated with the electric scalar potential V [LOU 
95]. For the description of the regions outside the conductors, the method of 
boundary integrals can be used [KRA 88] [TAN 88]. In this case, only the surface of 
the conductor has to be meshed, but the rigidity matrix is full. The finite element 
method can also be used, which leads to a sparse band matrix [ROD 91], [GUE 
94a]. 

6.7.1.2. Validity and limitations of the surface impedance condition  

There is a limitation of topological order, which is related to the magnetic scalar 
potential. In fact, when the conducting region is non-simply connected, i.e. it 
comprises at least one hole, this potential cannot be used without specific 
processing. There are also limitations of a geometric nature, during the use of the 
expression of the surface impedance in the one-dimensional approximation. This 
expression is valid if the following conditions are checked: 

– δ << L L: characteristic length of the conductor; 

– δ << R R: characteristic curvature radius of the conductor. 

Moreover, the one-dimensional approximation is no longer valid when the 
problem consists of edges or corners, or when the radius of curvature is small 
compared to the skin depth. Surface impedance formulae modified for small 
curvature radii, for edges with 90° or for an edge of any θ angle are proposed in 
[DEE 90] [JIN 93].  
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Strong features Weak features  

– Easy implementation  

– Low CPU time cost  

– Good accuracy when the skin depth is 
small  

– No volume meshing inside the conductors  

– Bad accuracy in the corners and edges if 
the one-dimensional value of the surface 
impedance is used  

– Taking into account conductors which are 
non-simply connected is impossible without 
specific processing  

Table 6.2. Strong and weak features of the surface impedance method 
in magnetic scalar potential compared to a volume formulation H, E, AV, T-Ω 

6.7.1.3. The surface impedance condition in magnetic scalar potential  

Several presentations of the surface impedance formulation in reduced scalar 
potential exist: [BOS 84], [TAN 88] or [KRA 88]. The formulation presented in this 
section is taken from [GUE 94a]. The materials must have an isotropic permeability 
and an isotropic linear conductivity. 

 

Figure 6.8. Notations of the formulation 

The quantities subscripted by “0” are the values of these quantities on surface Γ 
of conductor Ωc. Those subscripted by “s” are the quantities on Γ tangential to Γ. 
By considering the case of the plate of infinite thickness [STO 94], the variation of 
the quantities along direction z is exponential: 
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The tangential magnetic field is expressed with tangential source field Hjs and 
reduced scalar potential φr: 
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rsjss   - grad H H φ=  [6.21] 

The formulation in reduced potential, in the air region Ω, is recalled below:  

∫∫∫ ΓΓΩ Γ⋅=Γ⋅+Ω⋅ dnngradgrad e0e0 jr HwdBwdw μφμ  [6.22] 

where ne is the outgoing normal of region Ω: ne = -n. 
 
The second term of [6.22] is transformed thanks to surface impedance relation 

[6.18] in order to take into account the conducting region. Faraday’s law 
curl E = -jωB makes it possible to express the normal of induction B on conductor 
surface Γ: B⋅n = -1/(jω) curl E⋅n. Galerkine’s method on surface Γ is applied to this 
relation, which is then transformed thanks to the vector analysis formulae and 
Stokes’ theorem: 

( ) ∫∫∫ ⋅−Γ⋅×=Γ⋅ ΓΓ λ λ
ωω

dEwdwgradnEdBw
j
1

j
1

n  [6.23] 

The third term of relation [6.23] is a linear integral on a contour λ located on 
surface Γ. It is zero on the edge between two surface elements located on the 
conductor surface, to ensure the continuity of the tangential component at the edge 
of the electric field E. This term is also zero on a symmetry plane where the 
condition H × n’ = 0 is imposed (φr = 0) and on a symmetry plane where the 
condition H⋅n’=0 is imposed (n’ is the normal to the symmetry plane). Expression 
(E×n) in the second term of [6.23] is expressed according to the tangential field on 
surface Hs, by using the surface impedance relation [6.18] and property 

sss n)H(n)nH(n=)H(nn ⋅⋅×× − : 

sssss  HZn)H(nZnEnE −=== ××××  [6.24] 

Relation [6.23] is thus written:  

∫∫ ΓΓ Γ⋅=Γ⋅ dHwZdBw sssgrad
j
1

n
ω

 [6.25] 

The final formulation is obtained by using [6.21] in [6.25], and [6.25] in 
formulation [6.22]: 
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∫∫
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The formulation in total potential is obtained by canceling the terms due to the 
source field Hj in the previous equation. 

The passage condition (H2 – H1) × n = K states that the surface current density 
K is due to the jump of the tangential component of the field through the layer of 
skin depth, where H1 = Hs and H2, which is the field inside the conductor, is 
assumed to be negligible with a certain depth. K and the surface density of Joule 
losses Pj are expressed according to field Hs calculated using potential φr thanks to 
[6.21] [KRA 88] [GUE 94a]: 

sΗ n K  ×= ,      
2

)(Re
2
1

sHsZjP =  [6.27] 

6.7.1.4. Validity of the condition in the presence of permeable conductor 

When the permeability of the conducting region is sufficiently high and the 
frequency is not too high, the magnetic field in the air on conductor surface Γ is 
mainly normal on this surface. The numerical application of the surface impedance 
condition in reduced scalar potential gives bad results in this case. This problem of 
numerical inaccuracy is similar to the well-known permeable region problem 
described by the formulation in reduced potential in magnetostatics: the tangential 
component of the total field, which is weak, is the difference in two great numbers 
[PRE 92]. A solution to solve this problem consists of using the surface impedance 
condition in total scalar potential to describe the conductor, instead of reduced 
scalar potential, and including this conductor in an region of air in total scalar 
potential; the possible coils being in an region of air in reduced scalar potential. In 
[BOS 86], criteria are given to determine if the field is mainly tangential or normal 
on the surface of the conductors: 

– if 
L
δ

μ
μ

>>0  and 1<<
L
δ

, the field is mainly tangential; 

– if 
L
δ

μ
μ

<<0  and 10 <<
μ
μ

, the field is mainly normal. 
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6.7.1.5. Taking into account magnetic nonlinearities with the surface impedance 
condition  

6.7.1.5.1. Use of a step function B(H) curve  

Preston and Deeley have developed surface impedance type methods in 3D in 
scalar potential for strongly saturated materials [PRE 82], [DEE 79], [DEE 86]. 
They have used the traditional model by Agarwal and MacLean. In this calculation 
model of the losses in strongly saturated steel sheets, curve B(H) is a rung (see 
Figure 6.9 below) [MAC 54], [AGA 59]. Under these conditions, simple loss and 
surface impedance formulae are obtained analytically. 

 

H

Bo

 

Figure 6.9. B(H) curve in Agarwal’s model  

More generally, there are two extreme cases: on the surface of the conductors, 
either the magnetic field is assumed to be sinusoidal, or the electric field is assumed 
to be sinusoidal. Actually, neither the electric field nor the magnetic field is 
sinusoidal, except in rare cases where it is possible to consider a 1D problem. The 
calculations carried out to obtain the surface impedance formulae (ZsH) in the case 
of the sinusoidal magnetic field are detailed in [MAC 54] and [AGA 59] and in 
[LOW 76] in the case of the sinusoidal electric field (ZsE). 

( )j2
1

3
8

+=
σδπsHZ     and   ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ += j
3
4

1
1

52
27 3

πσδ
π

sEZ  [6.28] 
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where H0 is the peak tangent magnetic field and δ is the penetration depth of the 
field for a nonlinear material. 

As the surface impedance depends on tangential field H0, it is necessary to 
perform iterations to adjust this surface impedance, by starting with a zero field and 
by taking, at iteration n, the field found in the previous iteration (so-called fixed 
point method). In practice, 4 to 6 iterations are required. It is preferable to use the 
induction corresponding to the real curve B(H) rather than induction B0 of the 



264     The Finite Element Method for Electromagnetic Modeling 

idealized step function curve. The results are accurate on a wider range of fields 
(from low to high fields). In order to ensure that the surface impedance formula is 
also valid in the first zone of curve B(H) (weak fields), the nonlinear and linear 
formulae can be weighted by a function of field H0 [FORD 94]. 

6.7.1.5.2. Use of a 1D finite element model  

The method presented here is more accurate than the previous one [KRA 97] 
[AYM 97]. It uses the solution of a 1D problem and an energy equivalence for 
taking into account materials with a nonlinear characteristic B(H). The solved 1D 
problem is the conducting plate problem having infinite thickness, subjected to a 
magnetic field parallel to its surface and uniform, where the plate has a nonlinear 
B(H) characteristic. The imposed field is such that either the magnetic field is time 
varying sinusoidal, or the induction is sinusoidal. The 1D problem is solved step by 
step over time using finite elements. For an imposed magnetic field H1, impedance 
Zs is calculated according to the surface density of active power Ps and of reactive 
power Qs by formula [AYM 97]: 

2
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2

H
dQjdP

Z ss
s

+
=  [6.29] 

Before the principal resolution, at the beginning of this one, a characteristic 
Zs(H1) is calculated. For this purpose, several impedances which correspond to 
various amplitudes of the imposed magnetic field H1 are calculated. We calculate 
points on curve Zs(H1) which allow all of curve B(H) to be described. Each 
calculated point corresponds to the resolution of the 1D problem with an amplitude 
H1. The curve is obtained by interpolation between each point of calculation. During 
the principal resolution, this curve Zs(H1) is directly used. As this impedance 
depends on the field on the surface of the conductor, iterations should be carried 
out, as for the method of the previous section, by the method known as the fixed 
point method. 

6.7.1.6. Example: transformer with its tank   

This is about a 50 Hz three-phase, three-limb distribution transformer. The 
magnetic circuit which is laminated is described by an region with a constant 
permeability with the formulation in total scalar potential. The oil inside the tank, 
which has the same permeability as that in the air, is described by the formulation in 
reduced scalar potential. As the tank is made of magnetic steel, the skin depth, 
approximately 3 mm at 50 Hz, is much lower than the thickness of the tank  
(1 cm). The field on the external side of the tank, which is an almost perfect screen, 
is thus considered zero. The internal surface of the tank is described by the surface 
impedance condition in reduced scalar potential. Calculations were carried out first 
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with a linear B(H) characteristic of the tank then with a nonlinear one. The presence 
of two symmetry planes makes it possible to describe only a quarter of the device. 

     

Figure 6.10. On the left: quarter of the geometry of the transformer described in software 
FLUX3D (only the middle voltage (MV) and high voltage (HV) coil windings of the one  

of the three phases of the transformer are represented). On the right: arrows of the surface 
current density at a given instant, and isovalues of Joule losses in the tank  

(the darkest grays represent the highest losses), at rated conditions 

6.7.2. Thin conducting regions  

6.7.2.1. Formulations in magnetic scalar potential  

D. Rodger has proposed an interesting formulation for dealing with thin 
conducting regions in the case δ >> e. It uses a scalar quantity “t” linked to the 
surface current density in the thin region and the magnetic scalar potential for the 
neighboring regions [ROD 87], [ROD 88], [ROD 92]. Nevertheless, the 
permeability of the thin region and the neighboring regions must be the same. We 
present in this section a more general formulation which allows the modeling of 
permeable thin regions while taking into account the skin effect in the thickness 
[GUE 94a]. This formulation, in magnetic scalar potential, requires surface elements 
with potential jump. The analytical solution of the conducting plate problem having 
a finite thickness subjected to transverse uniform fields is used [STO 74]. This 
analytical solution allows the surface impedances to be obtained, which will be used 
to obtain the formulation. This formulation was proposed in [KRA 90], [KRA 93] 
coupled with the boundary integral equations to take into account the neighboring 
regions. The formulation presented here was adapted for neighboring regions 
described by the finite element method [GUE 94a]. 
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The only validity condition of this formulation is the one which states that the 
region must be thin: e << L where L is a characteristic length of the thin region. The 
materials must have a linear and isotropic permeability and conductivity. 

6.7.2.1.1. Equations in the thin region  

 

Figure 6.11. Notations 

Let us take H1s and H2s as the tangential magnetic fields on both sides of the thin 
region Ω. The analytical solution of the one-dimensional problem of the finite 
thickness plate subjected to imposed fields H1s and H2s is given in [STO 74]. The 
expression of the field is written: 
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Current density J is tangential to the thin region. Ampere’s law curl H = J allows 
the expression of J to be obtained by deriving the expression of H above with 
respect to z: 
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The electric fields E1 on the “side 1” surface of the plate (E1 = E(z/2) = ρJ(z/2)), 
and E2, on side “2” (E2 = E(–z/2) = ρJ(–z/2)), can thus be written: 

( )ss HHnE 1211 αβ −×=  [6.32] 

( )ss HHnE 2122 αβ −×=  [6.33] 

with the complex surface impedances 
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a
thσα =  and 
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a

shσβ = . 
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Relations [6.32] and [6.33] bind surface feature electric fields E1 and E2 to H1s 
and H2s, tangential magnetic fields on both sides of the thin region Ω. It is noted that 
relation [6.33] can be obtained from relation [6.32] by permuting indices “1” and 
“2”. 

6.7.2.1.2. Formulation finite elements in reduced scalar potential  

The following proof is similar to that in section 6.7.1.3, concerning the surface 
impedance condition, but differs by the thin region which comprises two borders 
instead of only one. Thereafter, we will focus on side “1” of the thin region. The 
formulation in reduced scalar potential in neighboring region Ω1 can be written: 

∫∫∫ ΓΓΩ Γ⋅=Γ⋅+Ω⋅ dHwdBwdw j 11111 nngradgrad
1

μφμ  [6.34] 

The second term of [6.34] is transformed thanks to relations [6.32] and [6.33]. 
Thus, this term and the one corresponding to region Ω2 allow regions Ω1 and Ω2 to 
be coupled and the thin conducting region to be taken into account. We use relation 
[6.23] which is valid on both borders of thin region Ω. On the border of side “1”, 
this relation is written: 

( ) ∫∫∫ ⋅+Γ⋅×−=Γ⋅ ΓΓ λ λ
ωω

dEwdwgradnEdBw 11111 j
1

j
1

n  [6.35] 

The line integral term disappears with the boundary conditions, and between 2 
adjacent elements for the same reasons as in section 6.7.1.3. The tangential fields 
H1s and H2s are expressed according to the tangential source field Hjs and of the 
reduced potential, by: 

H1s = Hjs - grads φ1,          H2s = Hjs - grads φ2 [6.36] 

By using the electric field expression [6.32] and the propriety 
sss n)H(n)nH(n=)H(nn ⋅⋅×× − , relation [6.35] becomes: 

( )∫∫ ΓΓ Γ−⋅=Γ⋅ dHHwdBw sss 2111 grad
j
1

n βα
ω

 [6.37] 

The formulation in the thin region represented by the relation above, can  now be 
coupled with the one of the formulation of the neighboring region Ω1, in order to 
ensure the continuity of the normal component of induction B ((B2–B1)⋅n1 = 0) at 
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the crossing of the interface. Having replaced relations [6.36] and [6.37] in [6.34], 
we obtain the final formulation: 
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Equation [6.38] corresponds to side “2” of the thin region. It is necessary to 
associate with it the second equation which corresponds to side “1”, which is 
deduced from [6.38] by permuting indices “1” and “2”. The total scalar potential 
formulation is obtained by canceling the terms due to source field Hj in equation 
[6.38]. 

The passage condition (H2 – H1) × n = K allows the surface current impedance to 
be expressed as a function of the scalar potential.  

( )211 φφ −×= sgradnK  [6.39] 

The surface density of Joule losses is expressed according to the tangential 
components of the magnetic fields on the two sides of the thin region H1s and H2s, 
by [GUE 94a]: 
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where 
δ

=γ e and, the surface density of reactive power is expressed according to 

magnetic fields H1 and H2 by [GUE 94a]: 
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Unlike the Joule losses, the reactive power is dependent on all the components 
of the fields. In fact, the Joule losses are calculated by integral 1/2σ |J|² where 
current density J is tangential and is expressed according to H1s and H2s, whereas the 
reactive power is calculated by integral 1/2 μ |H|² and is expressed according to the 
total magnetic field H. It can be shown that the variation of the normal component 
Hn(z) has the same variation as the tangential component Hs(z) given by [6.30]. 

In the extreme case where skin depth δ becomes very small in comparison to 
thickness e, impedance α tends towards surface impedance ZS and coupling 
impedance β between the 2 sides becomes zero. Formulation [6.37] corresponds, in 
this case, to two conditions of surface impedance [6.26] on the two faces of the thin 
region, which decouples the 2 sides. 

Inversely, in the extreme case where skin depth δ becomes very large in 
comparison to thickness e, impedances α and β tend towards 1/(σe) and the power 
in the thin region becomes mainly resistive and the two sides are strongly coupled. 

6.7.2.1.3. Edges of thin regions, line air-gaps and holes  

The condition φ1 – φ2 = constant on a line imposes that current density K is 
tangential with this line. Thus, the line currents are the equipotentials of φ2– φ1. 
When a thin region comprises an edge, this edge is a line current on which the 
condition “φ1 – φ2 = constant” must be imposed. In fact, the current density is 
characterized with a conservative flux in the thin region and only exists in this 
region. The constant is taken as equal to zero on the edge, which corresponds to 
confounding the degrees of freedom on the two sides: φ1 = φ2 [ROD 87]. Applying 
this condition φ1 = φ2 on a line allows insulating line air-gaps on a thin region to be 
described, for example, in the case of two jointed conducting plates, insulated 
between them. It is often the case of stator sheets of turbo-alternators, to reduce the 
losses by eddy currents. These line air-gaps must touch the edge of the thin 
conducting region, otherwise connectivity problems may occur [GUE 94a]. 

The magnetic scalar potentials can lead to problems of regions which are non-
simply connected when a thin region has holes. A solution consists of describing 
these holes as a material of low conductivity [ROD 87]. 
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6.7.2.1.4. Examples: transformer with its tank, conducting disk 

 

Figure 6.12. 100 MVA three-phase, three-limb transformer under overloaded conditions.  
Tank modeled using surface elements taking into account the skin effect along  the thickness. 

6 HV and LV coils are not represented. On the left, view of surface meshing  
of the magnetic core and the tank. On the right, lines and cones  

representing the surface current density in the tank 

        

Figure 6.13. Conducting disk with a line air-gap on a diameter, subjected 
to a vertical sinusoidal uniform field. On the right, lines and cones  

representing the surface current density 

6.7.2.1.5. Composite shells 

The shields used in EMC (electromagnetic compatibility) are often made of 
several joined sheets of various materials. It is possible to take into account these 
associations of two or more layers with the formulation for thin conducting regions 
in magnetic scalar potential described in section 6.7.2.1 [ABA 01]. Let us consider 
two plates. Between these two plates, the tangential component of the magnetic field 
is conserved, thus the magnetic scalar potential φ2 between these two plates is 
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conserved. Let us take φ and φ3 as the potentials on the external sides of the plates. 
The potential φ2 between the two plates is expressed by an affine combination of 
potentials φ and φ3. Once φ2  is suppressed in the initial matrix which is dependent 
on the unknown variables φ, φ2 and φ3, a system function of only φ and φ3, which 
corresponds to a plate equivalent to the first two, is obtained. The method can be 
extended to a shield of more than two plates, by calculating the system which 
corresponds to a plate equivalent to two joined plates, then by calculating the system 
which corresponds to the equivalent plate coupled to another plate, then by 
continuing in a recursive way. 

6.7.2.2. AV formulation  

6.7.2.2.1. Thin regions and line regions without potential jump in AV formulation  

The AV formulation without potential jump allows thin conducting regions to be 
described when the skin depth is significantly larger than the thickness of the thin 
region. The neighboring regions must be described by a formulation in potential 
vector A: A formulation or AV formulation.  

When a thin conducting region is described by potentials A and V, the thin 
region is much more conducting than the neighboring regions, and the skin depth is 
large in comparison to thickness e, it can be shown that the current density is 
constant in the direction of this thickness [NAK 90]. Therefore, potentials A and V 
are constant in the thickness direction, the current is tangential on the surface of the 
thin region and the induction is normal in this surface. The validity conditions of 
this formulation are thus e << L, σ >> σext and δ >> e, where L is a characteristic 
length of the thin region, e its thickness, σ its conductivity, σext the conductivity of 
the external region and δ the skin depth in the thin region. AV formulation also 
allows conducting line regions to be described when the skin depth is significantly 
larger than the dimensions of the line region section. The surface formulation and 
the line formulation without potential jump are obtained from the volume 
formulation thanks to the methods described in sections 6.3 and 6.5. 

6.7.2.2.2. Thin regions with potential jump in AV formulation  

In thin regions with potential jump in AV formulation, quantities H, B, J and E 
can have any direction. The skin depth must be larger than the thickness of the thin 
region. Under these conditions, quantities H, B, J and E are assumed to be constant 
in region thickness. Such regions thus allow slightly conducting thin regions in very 
conducting volume regions to be described, as well as thin conducting regions in the 
air, etc. The surface formulation with potential jump is obtained using the volume 
formulation thanks to the general method described in section 6.4. 
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6.7.2.3. Other formulations for thin conducting regions 

The formulation for thin conducting region proposed by O. Biro uses as state 
variables scalar quantity t in the thin region and potential vector A in the external 
regions. In these regions, the potential vector is used to accept the non-simply 
connected regions [BIR 92]. Z. Ren has used a surface element without potential 
jump in electric field E with edge elements [REN 90]. The external regions are 
taken into account by an integral method. 

6.8. Thin regions in electrostatic problems, “electric harmonic problems” and 
electric conduction problems 

For electrostatic problems, “electric harmonic problems” and electric conduction 
problems the state variable used is generally the electric potential. For these 
applications, it is possible to perform a reasoning similar to that described in section 
6.2 on magnetostatics, with the magnetic scalar potentials, for thin sheets and air-
gaps. For electrostatic problems and “electric harmonic problems”, the surface 
formulation with potential jump makes it possible to describe, for example, the thin 
cracks located in the dielectric of capacitors. For electrostatic problems, the surface 
charge densities can be described by thin regions with or without potential jump. 
For “electric harmonic problems”, the thin conducting regions with high permittivity 
surrounded by a vacuum can be described for the simulation of pollution on 
insulators. 

6.9. Thin thermal regions  

In thermal problems, the state variable used is generally the temperature. The 
surface formulation without temperature jump allows very good heat thin 
conducting regions to be described, i.e. having a great thermal conductivity 
compared to the medium where they are, for example, metal thin sections in the air, 
etc. In these regions, the heat flow must mainly be tangential. The surface 
formulation with temperature jump allows any type of thin region to be described, 
for example, the existing thin layers of low thermal conductivity in sandwich 
structures constituted by the power electronic components on their radiator. The 
surface densities of heat can also be described by thin regions with or without 
temperature jump. 
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