Table of Contents

Foreword .. xii
Acknowledgements xiii
List of Symbols xv
Introduction xvii

Chapter 1. Elementary Concepts of
Fracture Mechanics 1
 1.1. Introduction 1
 1.2. Superposition principle 3
 1.3. Modes of crack straining 4
 1.4. Singular fields at cracking point 5
 1.4.1. Asymptotic solutions in Mode I 8
 1.4.2. Asymptotic solutions in Mode II 9
 1.4.3. Asymptotic solutions in Mode III ... 9
 1.4.4. Conclusions 10
 1.5. Crack propagation criteria 10
 1.5.1. Local criterion 10
 1.5.2. Energy criterion 13
 1.5.2.1. Energy release rate G 13
 1.5.2.2. Relationship between G and
 stress intensity factors 15
Chapter 2. Representation of Fixed and Moving Discontinuities

2.1. Geometric representation of a crack: a scale problem
 2.1.1. Link between the geometric representation of the crack and the crack model
 2.1.2. Link between the geometric representation of the crack and the numerical method used for crack growth simulation

2.2. Crack representation by level sets
 2.2.1. Introduction
 2.2.2. Definition of level sets
 2.2.3. Level sets discretization
 2.2.4. Initialization of level sets

2.3. Simulation of the geometric propagation of a crack
 2.3.1. Some examples of strategies for crack propagation simulation
 2.3.2. Crack propagation modeled by level sets
 2.3.3. Numerical methods dedicated to level set propagation

2.4. Prospects of the geometric representation of cracks

Chapter 3. Extended Finite Element Method

3.1. Introduction

3.2. Going back to discretization methods
 3.2.1. Formulation of the problem and notations
 3.2.2. The Rayleigh-Ritz approximation
Table of Contents

3.2.3. Finite element method 73
3.2.4. Meshless methods ... 75
3.2.5. The partition of unity 78
3.3. X-FEM discontinuity modeling 79
 3.3.1. Introduction, case of a cracked bar 80
 3.3.1.1. Case a: crack positioned on a node 80
 3.3.1.2. Case b: crack between two nodes 81
 3.3.2. Variants .. 83
 3.3.3. Extension to two-dimensional and three-dimensional cases 85
 3.3.4. Level sets within the framework of the eXtended finite element method 93
3.4. Technical and mathematical aspects 94
 3.4.1. Integration ... 94
 3.4.2. Conditioning ... 96
3.5. Evaluation of the stress intensity factors 98
 3.5.1. The Eshelby tensor and the J integral 99
 3.5.2. Interaction integrals 103
 3.5.3. Considering volumic forces 106
 3.5.4. Considering thermal loading 107

Chapter 4. Non-linear Problems, Crack Growth by Fatigue ... 109

 4.1. Introduction .. 109
 4.2. Fatigue and non-linear fracture mechanics 114
 4.2.1. Mechanisms of crack growth by fatigue 114
 4.2.1.1. Crack growth mechanism at low ΔK_I 115
 4.2.1.2. Crack growth mechanisms at average or high ΔK_I 116
 4.2.1.3. Macroscopic crack growth rate and striation formation 119
 4.2.1.4. Fatigue crack growth rate of long cracks, Paris law 121
 4.2.1.5. Brief conclusions 122
4.2.2. Confined plasticity and consequences for crack growth

- **4.2.2.1. Irwin's plastic zones**
- **4.2.2.2. Role of the T stress**
- **4.2.2.3. Role of material hardening**
- **4.2.2.4. Cyclic plasticity**
- **4.2.2.5. Effect of residual stress on crack propagation**

Page: 122

4.3. eXtended constitutive law

- **4.3.1. Scale-up method for fatigue crack growth**
 - **4.3.1.1. Procedure**
 - **4.3.1.2. Scaling**
 - **4.3.1.3. Assessment**
- **4.3.2. eXtended constitutive law**
 - **4.3.2.1. Damage law**
 - **4.3.2.2. Plasticity threshold**
 - **4.3.2.3. Plastic flow rule**
 - **4.3.2.4. Evolution law of the center of the elastic domain**
 - **4.3.2.5. Model parameters**
 - **4.3.2.6. Comparisons**

Page: 137

4.4. Applications

- **4.4.1. Mode I crack growth under variable loading**
- **4.4.2. Effect of the T stress**

Page: 164

Chapter 5. Applications: Numerical Simulation of Crack Growth

- **5.1. Energy conservation: an essential ingredient**
 - **5.1.1. Proof of energy conservation**
 - **5.1.1.1. X-FEM approach**
 - **5.1.1.2. Cohesive zone models**
 - **5.1.1.3. Energy conservation for adaptive cohesive zones**
- **5.1.2. Case where the material behavior depends on history**

Page: 173
5.2. Examples of crack growth by fatigue simulations

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1. Calculation of linear fatigue crack growth simulation</td>
<td>182</td>
</tr>
<tr>
<td>5.2.2. Two-dimensional fatigue tests</td>
<td>183</td>
</tr>
<tr>
<td>5.2.2.1. Test-piece CTS: crack growth in mode 1</td>
<td>183</td>
</tr>
<tr>
<td>5.2.2.2. Arcan test piece: crack growth in mixed mode</td>
<td>184</td>
</tr>
<tr>
<td>5.2.3. Three-dimensional fatigue cracks. Propavanfiss project</td>
<td>187</td>
</tr>
<tr>
<td>5.2.3.1. Internal crack growth rate</td>
<td>187</td>
</tr>
<tr>
<td>5.2.4. Propagation of corner cracks</td>
<td>192</td>
</tr>
</tbody>
</table>

5.3. Dynamic fracture simulation

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1. Effects of crack speed (\dot{a}) and crack growth criteria</td>
<td>193</td>
</tr>
<tr>
<td>5.3.2. Analytical solution: rectilinear crack propagation on a reference problem</td>
<td>195</td>
</tr>
<tr>
<td>5.3.3. Kalthoff experiment</td>
<td>197</td>
</tr>
<tr>
<td>5.3.4. Tests on test pieces CCS of Maigre-Rittel</td>
<td>200</td>
</tr>
<tr>
<td>5.3.5. Réthoré, Gregoire and Maigre tests</td>
<td>202</td>
</tr>
<tr>
<td>5.3.6. X-FEM method in explicit dynamics</td>
<td>206</td>
</tr>
</tbody>
</table>

5.4. Simulation of ductile fracture

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1. Characteristics of material 16MND5</td>
<td>208</td>
</tr>
<tr>
<td>5.4.1.1. Dynamic characterization of the material</td>
<td>208</td>
</tr>
<tr>
<td>5.4.1.2. Fracture tests</td>
<td>209</td>
</tr>
<tr>
<td>5.4.1.3. Crack advancement measurement device</td>
<td>209</td>
</tr>
<tr>
<td>5.4.1.4. Description of tests on CT test pieces</td>
<td>211</td>
</tr>
<tr>
<td>5.4.1.5. Numerical simulation</td>
<td>212</td>
</tr>
<tr>
<td>5.4.2. Ring test and interpretation</td>
<td>219</td>
</tr>
<tr>
<td>5.4.2.1. Geometry, mesh, and loading</td>
<td>220</td>
</tr>
<tr>
<td>5.4.2.2. Interpretation of the test in Mode I</td>
<td>220</td>
</tr>
<tr>
<td>5.4.2.3. Interpretation of the test in mixed mode</td>
<td>222</td>
</tr>
</tbody>
</table>