Table of Contents

Chapter 1. Introduction 1
1.1. Historical background. 1
1.2. Considering the plastic and rheological properties of materials
in calculating and designing resistance structures for constructions 3
1.3. The basis of the mathematical model for calculating
resistance structures by taking into account the rheological properties
of the materials ... 4

Chapter 2. The Rheological Behavior of Building Materials 9
2.1. Preamble .. 9
2.2. Structural steel for construction
2.2.1. Structural steel for metal construction. 19
2.2.2. Reinforcing steel (non-prestressed)
2.2.3. Reinforcements, steel wire and steel wire products
for prestressed concrete .. 23
2.3. Concrete .. 32

**Chapter 3. Composite Resistance Structures with Elements Built
from Materials Having Different Rheological Properties** 45
3.1. Mathematical model for calculating the behavior of composite
resistance structures: introduction 45
3.2. Mathematical model for calculating the behavior of composite
resistance structures. The formulation considering creep 49
3.2.1. The effects of the long-term actions and loads: overview 49
3.2.1.1. Composite structures with discrete collaboration 61
3.2.1.2. Composite structures with continuous collaboration 67
3.2.1.3. Composite structures with complex composition 80
3.2.2. The effect of repeated short-term variable load actions: overview. 86
3.3. Mathematical model for calculating the behavior of composite resistance structures. The formulation considering stress relaxation.

3.3.1. The effect of long-term actions and loads: overview

3.3.1.1. Composite structures with discrete collaboration

3.3.1.2. Composite structures with continuous collaboration

3.3.1.3. Composite structures with complex composition

3.3.2. The effect of repeated short-term variable actions and loads: overview

3.4. Conceptual aspects of the mathematical model of resistance structure behavior according to the rheological properties of the materials from which they are made

Chapter 4. Applications on Resistance Structures for Constructions

4.1. Correction matrix

4.1.1. The displacement matrix of the end of a perfectly rigid body due to unit displacements successively applied to the other end of a rigid body

4.1.2. The reaction matrix of the end of a perfectly rigid body due to unit forces successively applied to the other end of a rigid body

4.2. Calculation of the composite resistance structures. Formulation according to the creep

4.2.1. Preliminaries necessary to systematize the calculation of composite structures in the formulation according to the creep

4.2.2. Composite structures with discrete collaboration

4.2.3. Composite structures with continuous collaboration

4.2.4. Composite structures with complex composition

4.3. The calculation of composite resistance structures. Formulation according to the stress relaxation

4.3.1. Preliminaries necessary to systematize the calculation of the composite structures in the formulation according to the stress relaxation

4.3.2. Composite structures with discrete collaboration

4.3.3. Composite structures with continuous collaboration

4.3.4. Composite structures with complex composition

Chapter 5. Numerical Application

5.1. Considerations concerning the validation of the mathematical model proposed for estimation through calculation of the behavior of the resistance structures by considering the rheological properties of the materials

5.2. The RALUCA computer applications system

5.3. The resistance structure

5.4. Numerical experiments
5.4.1. The first series of experiments 203
5.4.1.1. The particular conditions for the analysis
of the mathematical model 204
5.4.2. The second series of experiments 206
5.4.2.1. The particular conditions for the analysis
of the mathematical model 206
5.4.3. The third series of experiments 211
5.4.3.1. The influence of the parameters defining the creep function
5.4.3.2. The stresses state in the structure caused
by the contraction of the concrete 214
5.4.3.3. The influence of the deformability of the connection elements
on the effort’s distribution among the elements of the structure 217

Appendix 1. The Initial Stresses and Strains State of the Structures with
Continuous Collaboration ... 223
A.1. Simply supported beam with uniformly distributed load 227
A.2. Simply supported beam loaded with a concentrated force 230
A.3. Simply supported beam loaded with a concentrated moment
at each end .. 233
A.4. Simply supported beam loaded with concentrated forces applied
eccentrically, acting on a direction parallel with the axis of the beam ... 235

Appendix 2. Systems of Integral and Integro-differential Equations 241
1. Integro-differential equations whose unknown factors are functions
of one variable .. 242
2. Integro-differential equations whose unknown factors are functions
of two variables ... 251
3. Integro-differential equations whose unknown factors are functions
of one or two variables ... 260

Bibliography ... 283

Index ... 287