Table of Contents

Introduction

- 1.1. Introduction 1
- 1.2. GIS and public security. 3
- 1.3. Examples of applications for public security 8
 - 1.3.1. SIGASC application 8
 - 1.3.2. Application 12
 - 1.3.3. SIG CODIS application 15
- 1.4. Prospects for development 18
- 1.5. Conclusion ... 19
- 1.6. Bibliography 19

Chapter 1. From Prevention to Risk Management: Use of GIS

Sophie SAUVAGNARGUES-LESAGE

- 1.1. Introduction 1
- 1.2. GIS and public security. 3
- 1.3. Examples of applications for public security 8
 - 1.3.1. SIGASC application 8
 - 1.3.2. Application 12
 - 1.3.3. SIG CODIS application 15
- 1.4. Prospects for development 18
- 1.5. Conclusion ... 19
- 1.6. Bibliography 19

Chapter 2. Coupled Use of Spatial Analysis and Fuzzy Arithmetic:
Assessing the Vulnerability of a Watershed to Phytosanitary Products

Bertrand DE BRUYN, Catherine FREISSINET and Michel VAUCLIN

- 2.1. Introduction 23
- 2.2. Construction of the index. 24
- 2.3. Implementation of fuzzy calculations 26
- 2.4. Application to the watershed of Vannetin: vulnerability to atrazine 28
 - 2.4.1. The research site 28
 - 2.4.2. Parameters of the watershed 28
 - 2.4.2.1. Pluviometry 28
 - 2.4.2.2. Anthropogenic sub-index 29
 - 2.4.2.3. Pedology 29
 - 2.4.2.4. Summary of data common to the entire watershed 29
2.4.3. Cell parameters ... 29
 2.4.3.1. Geographic characteristics of the area 29
 2.4.3.2. Vegetation cover 30
 2.4.4. Fuzzy parameters 30
 2.4.5. Representation of the indicator and of its related inaccuracy 31
2.5. Conclusion .. 33
2.6. Bibliography .. 36

Chapter 3. Agricultural Non-Point Source Pollution 39
Philippe BOLO and Christophe BRACHET

3.1. Introduction .. 39
3.2. Mapping non-point source pollution phenomenon 40
 3.2.1. Mapping principles 40
 3.2.2. Description of the research phenomenon 41
 3.2.3. Mapping steps .. 41
3.3. Territorial database building rules 42
 3.3.1. Choosing software programs 43
 3.3.2. Design of the implemented GIS 44
 3.3.3. Organizing and creating geographic information layers 46
 3.3.3.1. Implementation of a conceptual data model 46
 3.3.3.2. Digitization of paper-based document 46
 3.3.3.3. Digital data import 47
 3.3.3.4. Controlling the geographic data integrity 47
 3.3.4. Organizing and creating attribute tables 47
 3.3.4.1. Implementing a conceptual data model 47
 3.3.4.2. Creating a data dictionary 47
 3.3.4.3. Thematic data processing or import 48
 3.3.4.4. Controlling the attribute data integrity 48
3.4. The data sources used .. 48
 3.4.1. Identifying the available information 48
 3.4.2. Soil-related data 49
 3.4.2.1. Surface texture of the soils 50
 3.4.2.2. Soil hydromorphy 51
 3.4.2.3. Soil textural differentiation 51
 3.4.3. Topography-related data 52
 3.4.3.1. The slope .. 53
 3.4.3.2. Slope orientation 53
 3.4.4. Land use-related data 54
 3.4.5. Land planning-related data 56
 3.4.5.1. Hedges ... 56
 3.4.5.2. Ditches ... 56
 3.4.5.3. Agricultural land drainage 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5. Pollution risk zoning</td>
<td>58</td>
</tr>
<tr>
<td>3.5.1. Treatments to be performed</td>
<td>58</td>
</tr>
<tr>
<td>3.5.1.1. Zoning of the potential for pollution</td>
<td>58</td>
</tr>
<tr>
<td>3.5.1.2. Vulnerability zoning</td>
<td>59</td>
</tr>
<tr>
<td>3.5.1.3. Risk zoning</td>
<td>59</td>
</tr>
<tr>
<td>3.5.2. An example of risk zoning</td>
<td>60</td>
</tr>
<tr>
<td>3.5.2.1 General presentation of the research area</td>
<td>60</td>
</tr>
<tr>
<td>3.5.2.2. Knowing the risks</td>
<td>60</td>
</tr>
<tr>
<td>3.5.2.3. Transfer diagnosis</td>
<td>64</td>
</tr>
<tr>
<td>3.5.2.4. Risk management</td>
<td>65</td>
</tr>
<tr>
<td>3.6. Risk zoning applications</td>
<td>66</td>
</tr>
<tr>
<td>3.6.1. Risk knowledge applications</td>
<td>67</td>
</tr>
<tr>
<td>3.6.2. Spatial planning applications</td>
<td>67</td>
</tr>
<tr>
<td>3.6.3. Applications related to monitoring water quality</td>
<td>68</td>
</tr>
<tr>
<td>3.7. Conclusion</td>
<td>69</td>
</tr>
<tr>
<td>3.8. Bibliography</td>
<td>70</td>
</tr>
<tr>
<td>Chapter 4. Cartographic Index and History of Road Sites</td>
<td>71</td>
</tr>
<tr>
<td>that Face Natural Hazards in the Province of Turin</td>
<td></td>
</tr>
<tr>
<td>Paola ALLEGRA, Laura TURCONI and Domenico TROPEANO</td>
<td></td>
</tr>
<tr>
<td>4.1. Introduction</td>
<td>71</td>
</tr>
<tr>
<td>4.2. Principal risks</td>
<td>73</td>
</tr>
<tr>
<td>4.3. Research area</td>
<td>74</td>
</tr>
<tr>
<td>4.3.1. Geological insight</td>
<td>74</td>
</tr>
<tr>
<td>4.3.2. Morphology of the research areas</td>
<td>75</td>
</tr>
<tr>
<td>4.4. Working method</td>
<td>76</td>
</tr>
<tr>
<td>4.5. Computer-based synthetic analysis and transcription of historical data and information collected on the research area</td>
<td>78</td>
</tr>
<tr>
<td>4.6. First results</td>
<td>80</td>
</tr>
<tr>
<td>4.7. Structure of computer thematic mapping</td>
<td>82</td>
</tr>
<tr>
<td>4.8. Application and use of the method</td>
<td>84</td>
</tr>
<tr>
<td>4.9. Bibliography</td>
<td>85</td>
</tr>
<tr>
<td>Chapter 5. Forest and Mountain Natural Risks: From Hazard Representation to Risk Zoning – The Example of Avalanches</td>
<td>87</td>
</tr>
<tr>
<td>Frédéric BERGER and Jérôme LIÉVOIS</td>
<td></td>
</tr>
<tr>
<td>5.1. Introduction</td>
<td>87</td>
</tr>
<tr>
<td>5.1.1. General information on forests</td>
<td>87</td>
</tr>
<tr>
<td>5.1.2. The protective role of mountain forests</td>
<td>88</td>
</tr>
<tr>
<td>5.2. Identification of protective forest zones</td>
<td>90</td>
</tr>
<tr>
<td>5.2.1. General principle</td>
<td>90</td>
</tr>
<tr>
<td>5.2.2. Methodology</td>
<td>90</td>
</tr>
</tbody>
</table>
5.2.3. Building up a synthesis map of natural hazards
5.2.3.1. General information on the process of mapping avalanches
5.2.3.2. General principles to build a synthesis map of natural hazards upon existing cartographic documents
5.2.3.3. A method to characterize potential avalanche terrain
5.2.4. Building up the forest map
5.2.5. Building up the natural forest-hazard synthesis map
5.2.6. Building up the map of socio-economic issues and vulnerability
5.2.7. Building up the priority areas for forestry action map
5.3. Perspectives
5.4. The creation of green zones in risk prevention plans
5.4.1. Natural hazard prevention plans
5.4.1.1. Objectives
5.4.1.2. Tools
5.4.1.3. A necessity
5.4.2. Transfer from researchers to users
5.4.3. The method used
5.4.4. Consequences of these works
5.4.5. Reflections and perspectives
5.5. Conclusion: general recommendations
5.6. Bibliography

Chapter 6. GIS and Modeling in Forest Fire Prevention

Marielle JAPPIOT, Raphaëlle BLANCHI and Franck GUARNIERI

6.1. Understanding forest fire risks
6.1.1. Risk
6.1.2. Description of the phenomenon
6.1.3. Particularities of fire risk
6.1.3.1. Forest fire hazard
6.1.3.2. Human response to the phenomenon
6.1.3.3. Specific issues
6.1.4. A spatio-temporal variation of forest fire risk
6.2. Forest fire management: risk mapping and the use of spatial analysis
6.2.1. Requirements with respect to forest fire risk assessment
6.2.1.1. Chronological evolution in the field of forest fire risk mapping
6.2.1.2. Town planning requirements
6.2.1.3. Forest management requirements
6.2.1.4. Other requirements
6.2.2. Forest fire risk assessment and mapping: the use of geographic information systems
6.2.2.1. Towards a risk analysis approach
Chapter 6. Spatial Decision Support and Multi-Agent Systems:
Application to Forest Fire Prevention and Control

Franck GUARNIERI, Alain JABER and Jean-Luc WYBO

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2.2. Implementing traditional spatial analysis tools to assess forest fire risks.</td>
<td>132</td>
</tr>
<tr>
<td>6.2.2.3. Coupling to models</td>
<td>135</td>
</tr>
<tr>
<td>6.3. Using GIS to map forest fire risks</td>
<td>137</td>
</tr>
<tr>
<td>6.3.1. Forest fire risk assessment and mapping in the Massif des Maures (Department of Var): raster GIS</td>
<td>138</td>
</tr>
<tr>
<td>6.3.1.1. Analytical approach: the example of fire propagation hazard</td>
<td>138</td>
</tr>
<tr>
<td>6.3.1.2. Towards a global approach: characterization of interfaces with the use of remote sensing</td>
<td>141</td>
</tr>
<tr>
<td>6.3.2. WILFRIED – fire fighting support (coupling GIS and model)</td>
<td>143</td>
</tr>
<tr>
<td>6.3.2.1. Model systems and knowledge-based systems for the processing of knowledge</td>
<td>143</td>
</tr>
<tr>
<td>6.3.2.2. WILFRIED, a PSE dedicated to forest fire prevention</td>
<td>144</td>
</tr>
<tr>
<td>6.3.2.3. Partial conclusion</td>
<td>147</td>
</tr>
<tr>
<td>6.4. Conclusion</td>
<td>147</td>
</tr>
<tr>
<td>6.5. Bibliography</td>
<td>148</td>
</tr>
</tbody>
</table>

Chapter 7. Spatial Decision Support and Multi-Agent Systems:
Application to Forest Fire Prevention and Control

Franck GUARNIERI, Alain JABER and Jean-Luc WYBO

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Introduction</td>
<td>151</td>
</tr>
<tr>
<td>7.2. Natural risk prevention support and the need for cooperation between the software programs</td>
<td>152</td>
</tr>
<tr>
<td>7.2.1. The cooperation issue between the information systems</td>
<td>152</td>
</tr>
<tr>
<td>7.2.2. The various approaches aiming at facilitating this type of cooperation</td>
<td>153</td>
</tr>
<tr>
<td>7.3. Towards an intelligent software agent model to satisfy the cooperation between the decision-support systems dedicated to natural risk prevention</td>
<td>154</td>
</tr>
<tr>
<td>7.3.1. The multi-agent paradigm</td>
<td>154</td>
</tr>
<tr>
<td>7.3.2. Intelligent software agents</td>
<td>155</td>
</tr>
<tr>
<td>7.3.3. A proposed intelligent software agent model</td>
<td>157</td>
</tr>
<tr>
<td>7.4. Experiment in the field of forest fire prevention and control</td>
<td>158</td>
</tr>
<tr>
<td>7.4.1. Context of the experiment</td>
<td>158</td>
</tr>
<tr>
<td>7.4.2. The experiment scenario</td>
<td>160</td>
</tr>
<tr>
<td>7.4.3. First part of the scenario</td>
<td>160</td>
</tr>
<tr>
<td>7.4.4. Second part of the scenario</td>
<td>161</td>
</tr>
<tr>
<td>7.4.5. An example of problem solving</td>
<td>165</td>
</tr>
<tr>
<td>7.4.6. Conclusion of the scenario</td>
<td>166</td>
</tr>
<tr>
<td>7.5. Conclusions and perspectives</td>
<td>166</td>
</tr>
<tr>
<td>7.6. Bibliography</td>
<td>167</td>
</tr>
</tbody>
</table>
Table of Contents

10.4.2. An information system at the regional level to analyze dike failure risks in the Mid-Loire region .. 200
10.4.3. An information system at local level for the integrated management of diked areas ... 203
 10.4.3.1. Functional analysis of the diked system 203
 10.4.3.2. Conceptual modeling and prototyping 204
 10.4.3.3. Examples of results .. 209
10.5. Recent progress and perspectives 212
10.6. Bibliography .. 213

Chapter 11. Geomatics and Urban Risk Management: Expected Advances .. 215
Jean-Pierre ASTÉ

11.1. Towns, risks and geomatics .. 215
 11.1.1. An overview ... 215
 11.1.2. City: a much sought after security area 216
 11.1.3. Risk: a poorly understood notion 217
 11.1.4. Geomatics as a data structuring and management tool 217
11.2. Prevention stakeholders: their responsibilities, their current resources and expectations 218
 11.2.1. Ordinary state or emergency state 218
 11.2.2. Government and institutional stakeholders 218
 11.2.3. Municipal stakeholders and the populations they represent ... 219
 11.2.4. Operational and technical stakeholders 220
 11.2.5. Insurance agents .. 220
 11.2.6. Scientific stakeholders .. 221
 11.2.7. Compelled to live with an identified risk 222
11.3. Today’s methods and tools: strengths and weaknesses 223
 11.3.1. Urban reference systems and the expected connection with the digitizing of cadastral maps ... 223
 11.3.2. Managing experience .. 224
 11.3.3. Knowledge and modeling of phenomena 226
 11.3.4. Monitoring phenomena .. 227
 11.3.5. Reducing vulnerability ... 227
 11.3.6. Risk assessment .. 228
 11.3.7. Macro and microeconomic approach 229
 11.3.8. The means of exchange of experiences, skills and knowledge .. 230
 11.3.9. Consultation, public information, training and culture 230
11.4. New potentialities using geomatic methods and tools 232
 11.4.1. Geomatics .. 232
 11.4.2. Acquiring and structuring spatial and temporal data 233
 11.4.2.1. Data for territories .. 233
11.4.2.2. Data of phenomena .. 233
11.4.2.3. Data related to exposed elements 234
11.4.3. Modeling phenomena and behaviors 235
 11.4.3.1. Modeling phenomena 235
 11.4.3.2. Vulnerability assessment 236
 11.4.3.3. Understanding social and economic behavior 236
11.4.4. Task analysis and support to complete and control them .. 237
11.4.5. Managing experience and knowledge 238
11.4.6. Quantified and hierarchical appreciation of the risks involved 239
11.5. Some ongoing initiatives since the beginning of 2001 240
 11.5.1. Examples from Lyon: the information system of the service of Balmes and the GERICO project 240
 11.5.2. An Alpine concern: avalanche risk management 242
 11.5.3. Risk management and natural or man-made subterranean caverns, mines and quarries 243
 11.5.4. The RADIUS project of the international decade for natural disaster reduction (Décennie internationale pour la prevention des catastrophes naturelles (DIPCN)) 243
 11.5.5. Bogotá and its risk and crisis information system (SIRE) 244
 11.5.6. The CEUR project in preparation between the Rhône-Alpine and Mediterranean cities 244
 11.5.7. The Base-In project of recording Grenoble’s historical floods 245
11.6. Assessment and outlook: fundamental elements of future systems 245
 11.6.1. Territory .. 246
 11.6.2. Phenomena .. 246
 11.6.3. Stakeholders .. 247
11.7. Bibliography .. 247

List of Authors .. 249

Index .. 251