Contents

FOREWORD .. xi
Bernard DUBUISSON

INTRODUCTION xv
Patrick MILLOT

PART 1. DESIGN OF HUMAN–MACHINE SYSTEMS 1

CHAPTER 1. HUMAN-CENTERED DESIGN. 3
Patrick MILLOT

 1.1. Introduction. .. 3
 1.2. The task–system–operator triangle 4
 1.2.1. Controlling the diversity of the tasks depending on the
 situation .. 4
 1.2.2. Managing the complexity of the system 9
 1.2.3. Managing human complexity 10
 1.3. Organization of the human–machine system 21
 1.3.1. The ambiguous role of the operator in automated systems........ 21
 1.3.2. Allocating humans with their proper role 23
 1.3.3. Sharing tasks and functions between humans and machines 24
 1.4. Human-centered design methodology 33
 1.5. Conclusion .. 35
 1.6. Bibliography .. 36

CHAPTER 2. INTEGRATION OF ERGONOMICS IN THE DESIGN OF
HUMAN–MACHINE SYSTEMS 43
Christine CHAUVIN and Jean-Michel HOC

 2.1. Introduction. .. 43
2.2. Classic and partial approaches of the system 46
2.2.1. Machine-centered approach 46
2.2.2. Activity and human-based approaches 49
2.3. The central notion of performance (Long, Dowell and Timmer) 52
2.4. An integrated approach: cognitive work analysis 59
2.4.1. Domain analysis 60
2.4.2. Task analysis ... 68
2.4.3. Analysis of information-processing strategies 71
2.4.4. Socio-organizational approach 73
2.4.5. Analysis of competences 76
2.4.6. Some general remarks on the integrated approach 78
2.5. Conclusion ... 79
2.6. Bibliography ... 81

CHAPTER 3. THE USE OF ACCIDENTS IN DESIGN: THE CASE OF ROAD ACCIDENTS 87
Gilles MALATERRE, Hélène FONTAINE and Marine MILLOT

3.1. Accidents, correction and prevention 87
3.2. Analysis of accidents specific to the road 89
3.2.1. Road accidents as a statistical unit 89
3.2.2. Accidents as diagnosis tools 91
3.3. Need-driven approach ... 93
3.3.1. Definition of needs from the analysis of accidents 93
3.3.2. Particular case of urban areas 96
3.4. *A priori* analyses .. 98
3.5. What assistance for which needs?.................................. 101
3.5.1. Collision with a stationary vehicle 102
3.5.2. The struck vehicle is waiting to turn on an NR or a DR 103
3.5.3. Catching up with a slower vehicle 103
3.5.4. Dense lines: major incident at the front 105
3.5.5. Dense line: violent accident happening just in front 106
3.5.6. Dense line: sudden slowing 106
3.6. Case of cooperative systems 107
3.7. Using results in design ... 108
3.7.1. Detection of a slower user 110
3.7.2. Detection of several stopped vehicles blocking all the lanes..... 110
3.7.3. Detection of a stopped vehicle completely or partially
obstructing a road .. 111
3.7.4. Detection of a vehicle preparing to turn left 111
3.7.5. Detection of light two-wheelers circulating on the
right-hand side of the road 112
5.5. Perspectives for the design of a safe system. 194
5.6. Conclusion 197
5.7. Bibliography 198

PART 3. HUMAN–MACHINE COOPERATION 205

CHAPTER 6. CAUSAL REASONING: A TOOL FOR HUMAN–MACHINE
COOPERATION .. 207
Jacky Montmain

6.1. Introduction 207
6.2. Supervision 208
6.3. Qualitative model 214
 6.3.1. The origins 214
 6.3.2. Current models 216
 6.3.3. The evolution of qualitative reasoning (QR) 217
6.4. Causal graphs and event-based simulation 220
 6.4.1. The causal graph 222
 6.4.2. Evolution and event 224
 6.4.3. Simulation 227
6.5. Hierarchy of behavior models 235
 6.5.1. Definition of a graph hierarchy 236
 6.5.2. Creation of the hierarchy 237
 6.5.3. Online construction of graphs 238
6.6. Fault filtering 242
 6.6.1. Causality and digital simulators 242
 6.6.2. Generation of residuals and causal structure 247
 6.6.3. Interpretation of the errors for the isolation
 and filtering of faults 248
 6.6.4. Advantages for supervision 252
6.7. Discussion and conclusion 256
6.8. Bibliography 261

CHAPTER 7. HUMAN–MACHINE COOPERATION: A FUNCTIONAL
APPROACH ... 273
Jean-Michel Hoc

7.1. Introduction 273
7.2. A functional approach to cooperation 275
7.3. Cooperation in actions 278
7.4. Cooperation in planning 280
7.5. Meta-cooperation 281
7.6. Conclusion 282
7.7. Bibliography 283
Chapter 8. The Common Work Space for the Support of Supervision and Human–Machine Cooperation

Serge DEBERNARD, Bernard RIERA and Thierry POULAIN

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. Introduction</td>
<td>285</td>
</tr>
<tr>
<td>8.2. Human–machine cooperation</td>
<td>287</td>
</tr>
<tr>
<td>8.2.1. Definitions of human–machine cooperation</td>
<td>287</td>
</tr>
<tr>
<td>8.2.2. Characterization of cooperation activities</td>
<td>289</td>
</tr>
<tr>
<td>8.2.3. Common work space: human–machine cooperation medium</td>
<td>292</td>
</tr>
<tr>
<td>8.3. Application in air traffic control</td>
<td>294</td>
</tr>
<tr>
<td>8.3.1. Dynamic allocation of tasks</td>
<td>295</td>
</tr>
<tr>
<td>8.3.2. Air traffic control</td>
<td>296</td>
</tr>
<tr>
<td>8.3.3. First studies: SPECTRA projects</td>
<td>297</td>
</tr>
<tr>
<td>8.3.4. The AMANDA project</td>
<td>303</td>
</tr>
<tr>
<td>8.4. Application to the process of nuclear combustibles reprocessing</td>
<td>305</td>
</tr>
<tr>
<td>8.4.1. Introduction</td>
<td>305</td>
</tr>
<tr>
<td>8.4.2. Human supervision tasks</td>
<td>307</td>
</tr>
<tr>
<td>8.4.3. Design methodology of supervision systems adapted to humans</td>
<td>310</td>
</tr>
<tr>
<td>8.4.4. Improvement of the supervision and diagnosis system</td>
<td>311</td>
</tr>
<tr>
<td>8.4.5. Approximate reasoning</td>
<td>313</td>
</tr>
<tr>
<td>8.4.6. The use of cognitive principles in the design of supervision tools</td>
<td>317</td>
</tr>
<tr>
<td>8.4.7. An example of an advanced supervision system (ASS)</td>
<td>323</td>
</tr>
<tr>
<td>8.5. Conclusion</td>
<td>332</td>
</tr>
<tr>
<td>8.6. Acronyms</td>
<td>333</td>
</tr>
<tr>
<td>8.7. Bibliography</td>
<td>334</td>
</tr>
</tbody>
</table>

Chapter 9. Human–Machine Cooperation and Situation Awareness

Patrick MILLOT and Marie-Pierre PACAUX-LEMOINE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1. Introduction</td>
<td>343</td>
</tr>
<tr>
<td>9.2. Collective situation awareness</td>
<td>344</td>
</tr>
<tr>
<td>9.3. Structural approaches of human–machine cooperation</td>
<td>346</td>
</tr>
<tr>
<td>9.3.1. Dynamic allocation of tasks: horizontal cooperation structure</td>
<td>347</td>
</tr>
<tr>
<td>9.3.2. Vertical structure for cooperation</td>
<td>348</td>
</tr>
<tr>
<td>9.3.3. Multilevel structure for the dynamic allocation of tasks</td>
<td>351</td>
</tr>
<tr>
<td>9.4.1. Cooperative agents, forms of cooperation</td>
<td>353</td>
</tr>
<tr>
<td>9.4.2. Organization and cooperation</td>
<td>356</td>
</tr>
<tr>
<td>9.4.3. Human factors activating or inhibiting cooperation</td>
<td>358</td>
</tr>
</tbody>
</table>
9.4.4. Multilevel cooperative organization .. 359
9.4.5. Common work space (CWS) .. 360
9.5. Common work space for team-SA ... 367
9.6. Conclusion ... 369
9.7. Bibliography .. 370

CONCLUSION .. 375
Patrick MILLOT

LIST OF AUTHORS ... 379

INDEX .. 381