Table of Contents

Foreword ... ix
Preface .. xi
List of Acronyms .. xiii

Chapter 1. Linear Programming 1
 1.1. Objective of linear programming 1
 1.2. Stating the problem .. 1
 1.3. Lagrange method ... 4
 1.4. Simplex algorithm .. 5
 1.4.1. Principle ... 5
 1.4.2. Simplicial form formulation 5
 1.4.3. Transition from one simplicial form to another 7
 1.4.4. Summary of the simplex algorithm 9
 1.5. Implementation example 11
 1.6. Linear programming applied to the optimization
 of resource allocation 13
 1.6.1. Areas of application 13
 1.6.2. Resource allocation for advertising 13
 1.6.3. Optimization of a cut of paper rolls 16
 1.6.4. Structure of linear program of an optimal control problem 17

Chapter 2. Nonlinear Programming 23
 2.1. Problem formulation .. 23
 2.2. Karush–Kuhn–Tucker conditions 24
 2.3. General search algorithm 26
 2.3.1. Main steps .. 26
2.3.2. Computing the search direction 29
2.3.3. Computation of advancement step 33
2.4. Monovariable methods ... 33
2.4.1. Coggin’s method (of polynomial interpolation) 34
2.4.2. Golden section method .. 36
2.5. Multivariable methods ... 39
2.5.1. Direct search methods 39
2.5.2. Gradient methods ... 57

Chapter 3. Dynamic Programming 101
3.1. Principle of dynamic programming 101
3.1.1. Stating the problem .. 101
3.1.2. Decision problem .. 101
3.2. Recurrence equation of optimality 102
3.3. Particular cases .. 104
3.3.1. Infinite horizon stationary problems 104
3.3.2. Variable horizon problem 104
3.3.3. Random horizon problem 104
3.3.4. Taking into account sum-like constraints 105
3.3.5. Random evolution law 106
3.3.6. Initialization when the final state is imposed 106
3.3.7. The case when the necessary information
is not always available .. 107
3.4. Examples ... 107
3.4.1. Route optimization ... 107
3.4.2. The smuggler problem 109

Chapter 4. Hopfield Networks 115
4.1. Structure ... 115
4.2. Continuous dynamic Hopfield networks 117
4.2.1. General problem .. 117
4.2.2. Application to the traveling salesman problem 121
4.3. Optimization by Hopfield networks, based on simulated annealing .. 123
4.3.1. Deterministic method 123
4.3.2. Stochastic method ... 125

Chapter 5. Optimization in System Identification 131
5.1. The optimal identification principle 131
5.2. Formulation of optimal identification problems 132
5.2.1. General problem .. 132
5.2.2. Formulation based on optimization theory 133
5.2.3. Formulation based on estimation theory (statistics) 136
5.3. Usual identification models .. 138
5.3.1. General model ... 138
5.3.2. Rational input/output (RIO) models 140
5.3.3. Class of autoregressive models (ARMAX) 142
5.3.4. Class of state space representation models 145
5.4. Basic least squares method .. 146
5.4.1. LSM type solution .. 146
5.4.2. Geometric interpretation of the LSM solution 151
5.4.3. Consistency of the LSM type solution 154
5.4.4. Example of application of the LSM for an ARX model 157
5.5. Modified least squares methods 158
5.5.1. Recovering lost consistency 158
5.5.2. Extended LSM .. 162
5.5.3. Instrumental variables method 164
5.6. Minimum prediction error method 168
5.6.1. Basic principle and algorithm 168
5.6.2. Implementation of the MPEM for ARMAX models 171
5.6.3. Convergence and consistency of MPEM type estimations 174
5.7. Adaptive optimal identification methods 175
5.7.1. Accuracy/adaptability paradigm 175
5.7.2. Basic adaptive version of the LSM 177
5.7.3. Basic adaptive version of the IVM 182
5.7.4. Adaptive window versions of the LSM and IVM 183

Chapter 6. Optimization of Dynamic Systems 191
6.1. Variational methods .. 191
6.1.1. Variation of a functional 191
6.1.2. Constraint-free minimization 192
6.1.3. Hamilton canonical equations 194
6.1.4. Second-order conditions 195
6.1.5. Minimization with constraints 195
6.2. Application to the optimal command of a continuous process, maximum principle .. 196
6.2.1. Formulation ... 196
6.2.2. Examples of implementation 198
6.3. Maximum principle, discrete case 206
6.4. Principle of optimal command based on quadratic criteria 207
6.5. Design of the LQ command 210
6.5.1. Finite horizon LQ command 210
6.5.2. The infinite horizon QL command 217
6.5.3. Robustness of the LQ command 221
6.6. Optimal filtering .. 224
 6.6.1. Kalman–Bucy predictor 225
 6.6.2. Kalman–Bucy filter. 231
 6.6.3. Stability of Kalman–Bucy estimators 234
 6.6.4. Robustness of Kalman–Bucy estimators 235
6.7. Design of the LQG command 239
6.8. Optimization problems connected to quadratic linear criteria 245
 6.8.1. Optimal control by state feedback 245
 6.8.2. Quadratic stabilization 248
 6.8.3. Optimal command based on output feedback 249

Chapter 7. Optimization of Large-Scale Systems 251
 7.1. Characteristics of complex optimization problems 251
 7.2. Decomposition techniques 252
 7.2.1. Problems with block-diagonal structure 253
 7.2.2. Problems with separable criteria and constraints 267
 7.3. Penalization techniques 283
 7.3.1. External penalization technique 284
 7.3.2. Internal penalization technique 285
 7.3.3. Extended penalization technique 286

Chapter 8. Optimization and Information Systems 289
 8.1. Introduction 289
 8.2. Factors influencing the construction of IT systems 290
 8.3. Approaches 292
 8.4. Selection of computing tools 296
 8.5. Difficulties in implementation and use 297
 8.6. Evaluation 297
 8.7. Conclusions 298

Bibliography ... 299

Index .. 307