Chapter 7

Delaunay-based
Mesh Generation Methods

Delaunay triangulation and the construction methods resulting in this triangu-
lation have been extensive fields of research for a very long time. In particu-
lar, these topics are one of the major concerns in computational geometry (CG
for short). It is therefore not really surprising to find a great deal of literature
about Delaunay triangulation, starting with the pioneering paper by Delaunay
himself, [Delaunay-1934]. Relevant references include [Shamos, Preparata-1985],
[Joe-1991], [Fortune-1992), [Rajan-1994], [Boissonnat, Yvinec-1995] together with
[Ruppert-1995] among various others. Delaunay triangulation problems are of
interest for a number of reasons. Firstly, numerous theoretical issues can be inves-
tigated. Then, a wide range of applications in various disciplines exists including
many engineering problems where theoretical results are used or revisited so as to
obtain concrete algorithms.

Delaunay triangulation problems are of great interest as they can serve to
support efficient and flexible mesh generation methods. In this respect, people
concerned with engineering applications have investigated Delaunay-based mesh
generation methods. The main references for this topic include [Lawson-1977],
[Hermeline-1980], [Watson-1981], [Bowyer-1981] in the early 1980s and many oth-
ers in the next decade such as [Weatherill-1985], [Mavriplis-1990], together with
[George, Borouchaki-1997].

*
*x Kk

This chapter includes six parts. The first recalls some theoretical issues re-
garding Delaunay triangulation. The second discusses the notion of a constrained
triangulation. We then show how to develop a Delaunay-type mesh generation
method. The fourth part briefly introduces several variants. Finally, extensions
are proposed. We explain how to complete a mesh conforming to a pre-specified
size map and how to generate anisotropic meshes (used, in particular, when dealing
with parametric surface; see Chapter 15). Comments are added about weighted
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and anisotropic diagrams and triangulations together with potential applications.

7.1 Voronoi diagram and Delaunay triangulation

The Delaunay triangulation can be introduced in various ways (depending on the
context of application). A convenient way is to use the dual of this triangulation,
the Voronoi diagram.

The Voronoi diagram

Let S be a finite set of points (P;);—1
for S is the set of cells, V;, defined as:

n in d dimensions. The Voronoi diagram

Vi={P suchthat d(P,P)<d(PP;), Yj#i} (7.1)

where d(.,.) denotes the usual Euclidean distance between two points. A cell V; is
then the set of the points closer to P; than any other point in S. The V;’s are closed
(bounded or not) convex polygons (polyhedra in three dimensions, d-polytopes in d
dimensions); these non-overlapping cells tile the space, and constitute the so-called
Voronoi diagram associated with the set of points S in R?.

Figure 7.1: Left-hand side: Voronoi diagram (in two dimensions). Right-hand
side: corresponding Delaunay triangulation.

Delaunay triangulation and Voronoi diagram

A triangulation problem typically concerns the construction of a triangulation of
the convex hull of the F;’s such that the P,’s are element vertices. The construction
of the Delaunay triangulation of this convex hull can be achieved by considering
that this triangulation is the dual of the Voronoi diagram associated with S.
Based on Definition (7.1), each cell V; of the Voronoi diagram is a non-empty set
and is associated with one point in S. From these V;’s, the dual can be constructed,
which is the desired Delaunay triangulation. For instance, in two dimensions, the
cell sides are midway between the two points they separate, thus, they are segments
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that lie on the perpendicular bisectors of the edges of the triangulation. In other
words, joining the vertices in § belonging to two adjacent cells results in the
desired triangulation. The latter is unique and consists of simplices (triangles or
tetrahedra according to d) provided the points in S are locally in general position
(cf. Chapter 1 for this notion). Otherwise, elements other than simplices can
be constructed which can be easily split into simplices (thus resulting in several
solutions for a unique set of points).

Theoretical issues

This section recalls some classical theoretical issues about the Delaunay trian-
gulation. In this respect, a fundamental theorem, the so-called “lemme général
de Delaunay”, will be given. But first, we need to provide the definition of the
well-know empty sphere criterion.

Figure 7.2: B.N. Delaunay and his famous criterion. In this two-dimensional
example, the “empty sphere” criterion is violated as the open disc of triangle K
encloses point P. Note that this example is special as the point P is the vertex of
a triangle adjacent to K which is opposite the common edge.

The empty sphere criterion. In two dimensions, this definition refers to the
open disk circumscribing a triangle while in three dimensions it concerns the open
ball circumscribing a tetrahedron. This criterion is also referred to as the Delaunay
criterion. Note that the criterion is referred to as the empty sphere criterion while
would be better referred to as the empty ball criterion.

The “lemme général de Delaunay’ can be enounced as follows!

IPublished in French in 1934, see [Delaunay-1934], the original lemma is, in extenso, as
follows: “Soient T des tétraédres tout & fait arbitraires qui partagent uniformément l’espace @
n dimensions étant contigus par des faces entiéres ¢ n-1 dimensions et tels qu’un domaine
quelcongque limité (c’est-a-dire a diamétre limité) ait des points communs seulement avec un
nombre limité de ces tétraedres, alors la condition nécessaire et suffisante pour qu’aucune sphére
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General lemma. Let 7 be a given arbitrary triangulation of the convex hull
of a set of points S. If for each and every pair of adjacent simplices in T, the
empty sphere criterion holds, then this criterion holds globally and T is a Delaunay
triangulation.

Remark 7.1 This lemma provides a rather simple characterization of the Delau-
nay triangulation. Note that a local property about the Delaunay criterion for two
adjacent elements results in a global property for the entire triangulation.

The proof of this lemma can be achieved in several ways and can be found in
numerous references. For the sake of simplicity, we assume, in the following sec-
tions, that the given points are locally in general position. With this background,
we discuss one method (among many others) that allows the construction of the
Delaunay triangulation of the convex hull of a given set of points.

Incremental method. Given 7;, the Delaunay triangulation of the convex hull
of the first 7 points in S, we consider P the (i + 1)** point of this set.

The purpose of the incremental method is to construct Z;1+1, the Delaunay
triangulation including P as an element vertex, from 7;. To this end, we introduce
a procedure, the so-called Delaunay kernel which can be simply written as:

Tiy1=T7,—Cp +Bp, (7.2)

where Cp is the cavity and Bp is the ball associated with point P. Without loss
of generality, we assume that P is included? in 7;; then:

e cavity Cp is the set (the union) of elements in 7; whose open circumballs
contain point P and

e ball Bp is the set of elements formed by joining P with the external faces of
the above cavity.

From a practical point of view, the directly usable decisive result is that the
cavity is a star-shaped set with respect to point P.

Theorem 7.1 Let 7; be a Delaunay triangulation and let P be a point enclosed
in T;. The above construction scheme completes Tiv1, a Delaunay triangulation
including P as an element vertex.

There are several ways to prove this theorem. Here, we give two different proofs
based on what is assumed and what must be proved (a proof, using the Voronoi
duality, can be found in various references and in [George, Borouchaki-1997]).

circonscrite & un tel tétraédre ne contienne dans son intérieur aucun sommet d’aucun de ces
tétraédres est que cela ait liew pour chaque paire de deux de ces tétraédres contigus par une face
a n-1 dimensions, c’est-a-dire que dans chaque telle paire le sommet d’un de ces tétraédres ne
soit intérieur o la sphére circonscrite & autre, et réciproquement.”

2In fact, three situations are possible including this case. The other cases are when P is
outside all elements although it belongs to a circumscribing ball and the case where P is outside
all elements and balls. In such cases, the definition of the cavity is slightly different but the same
construction scheme holds.
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Proof 7.1.a. shows that 7,;1 is a Delaunay triangulation and establishes that
Bp conforms to the previous definition. Proof 7.1.b. shows that Relation (7.2)
where Bp is defined as above results in a Delaunay triangulation since 7; is De-
launay.

Proof (7.1.a.) This proof is completed in two parts. First, 7,11, a Delaunay
triangulation, exists as the dual of the corresponding Voronoi diagram. Moreover,
for the same reason, 7;41 is unique. Thus, the only thing we have to show is that
741 is the triangulation as defined by Relation (7.2), meaning that Cp and Bp
are exactly the same as the previously introduced sets.

As the elements that violate the Delaunay criterion are those of Cp (and only
those), the remaining part of 7; remains unchanged and this part becomes a part
of triangulation 7;41. Then, we just have to establish that Bp is the appropriate
construction to replace Cp.

Let Rp be the re-triangulated cavity in 7;,;. We will show that Rp is the
above Bp. The set Rp is a set of elements having P as a vertex. This is proved
by contradiction. To this end, let us assume that there exists one element in Rp
without P as one of its vertex, this element is then necessarily a member of Cp
and thus violates the Delaunay criterion. Therefore, all elements in Rp have P
as a vertex. As a consequence, they can be written as (P, f) where [ is a face.
Assume that f is not an external face of Cp, then there exists an element in Rp
that shares the face f with the element (P, f). In other words, this element can
be written as (@, f), where Q is different from P. This leads to a contradiction,
hence f is necessarily an external face of Cp. This enables us to conclude: the
solution exists, is unique and Rp = Bp is a valid way to replace the cavity. This
particular solution is then the desired solution. O

We now turn to a different proof. Before giving it, however, we recall a funda-
mental lemma.

Lemma 7.1 The Delaunay criterion for a pair of adjacent elements is symmetric.

We consider a pair of adjacent simplices sharing a face and P (respectively Q)
the vertex in these simplices opposite that face. Then,

Q¢ Bp < P¢Bg (7.3)

where Bp (resp. Bg) denotes the ball associated with the simplex having P
(resp. Q) as a vertex.

Proof (7.1.b). In this discussion, we do not infer the duality between the
Voronoi diagram and the Delaunay triangulation (so as to prove the existence
of a solution). Consider 7;, a Delaunay triangulation, and a point P contained in
some elements but not a vertex element. We would like to show that the above
construction completes 7,1, a Delaunay triangulation, with P as an element ver-
tex.

At first, P is an element vertex of 7,11 according to the definition of Bp. Then,
we just have to establish that 7;,; is a valid Delaunay triangulation.
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We first establish that the triangulation is valid (regarding the topology) as
Cp is a connected set of elements. Assume that Cp consists of two connected
components, one of these including an element, denoted by Ky, which separates
this connected component from that enclosing P. Then define the segment joining
the centroid of this element to P. This segment intersects one face of Ky, we
consider then the element, say K, sharing this face with Ky. By definition, before
introducing point P, the pair Ky and K; complies with the Delaunay criterion (as
members of 7;). Thus, the vertex of K; opposite the common face is outside the
circumball of K. As a consequence, the circumball of K; necessarily encloses
P and thus K3 is a member of Cp. Repeating the same discussion, it is shown
that all elements between the two connected components of the cavity are in fact
members of this set. Hence the cavity is a connected set. The triangulation of Bp
is then valid, in terms of its connections.

Moreover, since the external faces of Cp are visible by P, this triangulation
is valid (regarding the geometry). The reason is obvious in two dimensions. We
proceed by adjacency from triangle Ky, the triangle within which point P falls.
Then, the three edges of Ky are visible from P. Let K; a triangle sharing an edge
f1 with Ky. Then if K, violates the Delaunay criterion, it is in the cavity and the
faces of K other than f; are visible by P. This is due to the fact that P is inside
the circumball of K and that f; separates P and the vertex of K; opposite fi.
Thus, applying the same discussion makes possible the result for all the triangles
in the cavity. However, the same argument does not extend in three dimensions
as a face does not have the required separation property. Indeed, following the
same construction from Kj, it is possible to meet as tetrahedron K an element
whose faces other than f;, the face common with Ky, include one face, g, which
is not visible by P. In this case, Ky, the element sharing the face g with K is
necessarily in the cavity, thus leading to the desired property.

Exercise 7.1 Given the above situation, prove that Ko is a member of the cavity
of point P. Hint: examine the region within which P falls.

To complete the proof, we have to show that 7,11 is a Delaunay triangulation.
To this end we use the above general lemma. Then, the only thing which must
be established is that the empty sphere criterion holds for all and every pair of
adjacent elements. To account for all possible configurations of such pairs, the
elements in 7; 1 are classified into three categories:

i) those in Bp,
i1) those having one element outside Bp and sharing an external face of Cp,
i11) the remaining pairs.

Obviously, the elements falling in the third category conform to the Delaunay
criterion. Those of category ii) are Delaunay too. Actually, while their circumballs
do not enclose P, all the vertices opposite the face shared with the cavity are
not inside the circumballs associated with the elements in Bp. This is due to
the symmetric property of the Delaunay criterion. Those of category i) are also
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Delaunay. The proof is again obtained by contradiction. We consider an external
face of the cavity, say f, and we consider the element of this cavity having this
face (a former element of 7;). Let K4 be this element, together with the new
element constructed with this face, K,e,. Then, assume that the circumball of
Kpew includes a vertex, that is necessarily outside the circumball of K,y and is
therefore outside the cavity. While the elements outside the cavity are Delaunay,
this results in a contradiction. Thus, the entire proof is completed. O

Practical issues

In this section, we briefly consider some practical issues that can be derived from
the above theoretical background.

First, the incremental method can be used to define a constructive triangulation
method even in the case where the given points are not in general position (i.e.,
when four or more co-circular, or five or more co-spherical points are in the initial
set with corresponding empty circumballs, which is not likely to be plausible for
realistic engineering applications, apart from a case where all the points in the set
are co-spherical).

Then, after replacing the problem of constructing a triangulation of the convex
hull of the given set of points by that of triangulating a convex “box” enclosing all
the initial points, we can compute a solution using the same incremental method.
Indeed, the box defines a convex hull problem for set S enriched with the corners
of this box. As a consequence, all vertices fall within this box.

In the previous discussion, we did not account for numerical problems that
can arise such as those related to round-off errors. As the key to the method is
the proper definition of the cavity, any wrong decision when determining whether
an element is in this set may lead to an invalid cavity. In other words, due to
round-off errors, the above construction may fail, thus resulting in an unsuitable
triangulation. Hence, at the cavity construction step, a correction is applied to
ensure the star-shapedness of the cavity; see [George, Hermeline-1992]. Basically,
this means that we explicitly check the visibility property (which is equivalent
to the star-shapedness property) and, in case of a failure, we modify the cavity
accordingly.

Remark 7.2 In the case where such a correction is applied, the resulting trian-
gulation could be non-Delaunay.

The correction step is typically due to the numerical problems necessarily en-
countered when encoding the triangulation algorithm (and is representative of the
difficulty of encoding geometric algorithms). This merits the following comments.

A typical numerical problem. The cavity construction is done by adjacency
given the base as initialization (note that other methods exist). However, this
solution offers a guarantee about the connectivity of the set; indeed, it prevents
the obtaining of a multi-connected set.

The question is to decide if a given element is a member of the cavity of the
current point P. Let K be the visited element, let Ok be its circumcenter (i.e.,
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the center of its circumcircle (circumsphere)) and let rx be the corresponding
circumradius. Theoretically speaking, it is merely necessary to consider the ratio
a(PK) = d(PT’—SK) , (called the Delaunay measure) and to check if

alPK)<1.

The relevant check leads to comparing d(P,Ok) and rx. As these two quantities
are not precisely valued, this check may be inaccurate, specifically, if the region
in which P falls is close to the boundary of the disk (the ball) Cx of K. This
uncertainty may result in dramatic results and the Delaunay kernel, (Relation 7.2},
may result in a non-valid triangulation. These ambiguous configurations can fall
in two classes:

e the cavity is not empty, meaning that there exists at least one vertex of a
previously created element inside the cavity. This default is usually due to
a proximity problem,

e the cavity is not a connected set. In general, this denotes a cocyclic (co-
spherical) configuration.

B

Figure 7.3: The two ambiguous con-
figurations.

The first case leads to a vertex being missed (the resulting triangulation is still
valid albeit wrong in this respect). The second case leads to a triangulation having
overlapping regions. Figure 7.3 depicts these two situations.

e The first case of failure, due to imprecise computations, corresponds to the
case where all the triangles in the figure are picked; point & is then strictly
included in the cavity.

e The second case of failure, also caused by imprecise calculations, corresponds
to the case where all the triangles of the figure except triangle (ADB) are
selected, thus resulting in a non-connected cavity.

To overcome these problems, several solutions have been investigated. They
consist of
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¢ not introducing any point causing a problem,

o (slightly) perturbing all points leading to a problem,
¢ introducing a threshold value, £, in the comparisons,
¢ performing exact computations,

e or, finally, suppressing the ambiguity using a different formulation of the
algorithm.

The first solution requires that the current point is placed on a stack, such that
its insertion will be done later when the local context is modified.

The second approach moves the point upon insertion and modifies the quanti-
ties involved in the construction, thereby expecting to remove the ambiguity.

The third solution, which introduces a threshold value € in the comparison, has
been investigated by numerous authors but does not lead to satisfactory results.
An adequate value ¢ for a given case is not suitable for other cases.

The fourth approach implicitly assumes integer-type coordinates for the ver-
tices and is not based on the Delaunay measure (meaning that the circumcenters
and the circumradii are not computed or updated). Instead, it is related to the
equivalent formulation (let us consider the two-dimensional case)

Ag(zp,yp) <0

where Ak (z,y) is the inCircle predicate of Chapter 2. This inequality includes
quantities in the range of a length to the power d 4+ 2 which involve additions
(subtractions) and multiplications only. Consequently, a restriction is imposed on
the vertex coordinate’s range. In other words, the minimal distance between two
points is limited. Indeed, if & is the number of bits of the mantissa of a double
memory word, the largest value (denoted as l) that can be expressed in the above
expression must satisfy the following relation

b

[ <27z,

w0

Assuming that the vertex coordinates start from the origin, this relation states
that these coordinates must range from 0 to [ < 4096 in two dimensions and from 0
to [ < 1024 in three dimensions and, on the other hand, that the distance between
two points is at least 1 with a typical computer® for which b = 50. These limits
give both the maximal possible number of points according to the d directions as
well as the minimal distance between two points. We have introduced, de facto,
the separating power or the resolution of the method. The limit resulting from this
discussion is obviously too restrictive and, consequently, while a priori elegant, this
method is not adequate in general.

A determinant evaluation method can be found in [Avnaim et al. 1994], which
overcomes this limit at the expense of increased complexity.

3Double precision words are employed, with a priori 51 significative bits. For safety reason,
we limit ourselves to 50 bits. It should be noted that this limit depends on the technology;
actually, 128 bit computers are widely used.
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Another way to avoid this limit is to introduce an extended arithmetic and,
more specifically, to use infinite precision? in the computations. See for instance,
[Guibas et al. 1989, [Fortune, Van Wyk-1993] (among others) or [Perronnet-1988b]
and [Peraire, Morgan-1997] for meshing applications.

The fifth method is the one we would like to recommend. We assume that
the vertex coordinates are of integer type and we propose a new formulation for
the Delaunay kernel resulting in a robust and exact algorithm in this context.
The discussion of this method is the aim of the following paragraph. Briefly, the
assumptions about the coordinates allow us to find the base exactly. This base
enables us to define an approximated cavity which is furthermore corrected so as
to ensure the expected properties (emptyness, connecteness and star-shapedness).
This method will result in a valid triangulation which will not strictly be Delaunay.

Cavity correction A way to prevent a failure in the construction is to explicitly
check what is needed in terms of properties. This motivated the following so-called
cavity correction algorithm.

The problem centers on expressing the Delaunay kernel in such a way as to ob-
tain an efficient constructive algorithm despite the round-off errors that may occur
in the actual computation scheme. As already mentioned, the given coordinates
are assumed to be of integer type ensuring exact surface (or volume) evaluations
{(obviously, to this end, we compute twice the surface area or six times the volume
so as to avoid the division needed for an exact value). In this context, a two part
algorithm is proposed. This algorithm includes the above method serving to ini-
tialize the cavity, the latter being wrong in some cases. The process is completed
by a new algorithm, referred to as the correction algorithm. Let P be the current
point to be inserted and let 7; be the current triangulation; the first stage of the
method leads to

e using the Delaunay measure to construct the cavity associated with P, Cp,
by adjacency, given the base.

As this algorithm can result in a non-valid cavity, a correction step is needed as
the second part of the process. This correction relies in removing some elements
from Cp to meet the desired properties again. Thus, the correction algorithm can
be described as follows

e if a vertex of 7; falls in the cavity, find one of the simplices® in Cp, not in
the base, having this point as vertex and remove this element from Cp,

e if there is a (d — 1) boundary face of Cp not visible by P, pick and remove
the simplex having this face from the cavity,

4This approach requires some comments. Indeed, if we consider the example of a surface of a,
triangle strictly positive when valued in infinite precision, it is not obvious that the same surface
will be computed in the same way when used in a different software package.

5We can select as a simplex candidate the first element found that can be removed or select
one of the possible simplices, enjoying a desired property.
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e repeat this process as long as the number of elements in the cavity changes.
One iteration results in starting the whole analysis of the elements remaining
in the cavity again. This is done either from the base and proceeding by
adjacency or this can be done by considering the last element not affected
by the actual process.

Note that this correction algorithm converges. Indeed, in the worst case, the
cavity is reduced to the base thus leading to the convergence. Also, using adjacency
relationships in the process ensures that the cavity is a connected set; as the base
is necessarily included in the cavity, the latter contains point P. Finally the
visibility checks (surface or volume computations according to d) guarantee the
star-shapedness property of the cavity.

In summary, the proposed algorithm is constructive and the computations
are integer in nature (and thus are exact) or such that only surface (volume)
evaluations, or equivalent computations, have been used. Thus, it is possible to
obtain a computationally efficient and robust algorithm with a limit of application,
as discussed above, partly extended. Indeed, the limit is now [ < 24> leading to
I < 33554432 in two dimensions and ! < 65536 in three dimensions. Obviously,
an order of magnitude has been obtained and the separation power of the method
is increased. Hence, this method is usually well-suited. The [ value gives the
separation power of the method and indicates the maximal number of points in
each direction (the minimum distance from point to point being 1).

Actually while assuming integer coordinates in the discussion, the same idea
of using explicit validation works well with real coordinates.

7.2 Constrained triangulation

As pointed out in Chapter 1, a constrained triangulation problem concerns a tri-
angulation problem of a set of points in the case where some constrained entities
(edges or faces) are specified that must be present in the resulting triangulation.

In this section, we discuss three aspects related to a constrained triangulation.
We show how to maintain such an entity (edge or face) when it exists at some
step, then we turn to a method suitable for entity enforcement in two and three
dimensions.

7.2.1 Maintaining a constrained entity

A triangulation procedure such as the incremental method (Relation (7.2)) can be
constrained so as to preserve a specified edge (a face) which is introduced at some
step of the incremental scheme and must be retained. To this end, the construction
of the cavity is modified.

When visiting the elements by adjacency, we do not pass through the specified
edges (faces) which have been created at some previous step. This means that
two elements are not regarded as adjacent if they share a specified entity (edge or
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face) created in the triangulation at a previous step. Hence the cavity construction
is modified in this way. This results in a triangulation where some edges (faces)
are specified. Due to this constraint, this triangulation is no longer a Delaunay
triangulation (it is referred to as a constrained Delaunay triangulation for which
the Delaunay criterion is not required between a pair of elements separated by a
constrained item).

Theorem 7.2 Let7; be an arbitrary triangulation and let P be a point enclosed in
T;, then Relation (7.2) determines T;11, a valid triangulation having P as element
verter.

This theorem just means that Relation (7.2) (considered together with a cor-
rection algorithm in some cases; see the above discussion) still results in a valid
triangulation even when the initial triangulation is an arbitrary triangulation and
some constraints are present.

Proof. This proof is obvious since the cavity involved in the construction is a
star-shaped region due to the way in which it is constructed (starting from the
base and completed by adjacency while, at the same time, the required visibility
property is explicitly achieved by a correction stage). Then, the definition of the
ball is valid and the resulting triangulation is valid as well. O

The previous construction is not, in general, a solution to ensure the existence of
a pre-specified set of edges (edges and faces in three dimensions) in a triangulation
at the time the endpoints of these items have been inserted in the triangulation.
Thus, other methods must be developed which work well in this case.

Remark 7.3 In three dimensions, the above discussion holds for a constrained
face but is not a solution for a constrained edge. We can remove an edge by
turning around it by means of face adjacencies.

7.2.2 Enforcing a constraint

Constraints in two dimensions

We consider a series of edges whose endpoints are in set S and we want to make
sure that these items are edges of the triangulation at the time all the points in S
have been inserted. In general, this property does not hold, as can be seen in
Figure 7.4 where a simple example is depicted.

The problem we face is then to enforce® the missing edges. In two dimensions,
a rather simple procedure can be used to get this result, the so-called diagonal
swapping (see also Chapter 18). Given a pair of adjacent triangles sharing an
edge, we consider the quadrilateral formed by these two triangles. If this polygon
is convex then it is possible to swap its diagonal (the former common edge) so as to
create the alternate diagonal. In this way, we have removed an edge (while a new
one is created). A repeated use of this procedure enables us to delete all the edges

8This is an a posteriori approach to the constrained triangulation problem. Note that an a
priori solution can be also envisaged, as will be discussed hereafter and in Chapter 9.
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Figure 7.4: In this simple two-dimensional example, we have displayed the triangles
which are intersected or close to two missing edges (in particular, some triangles,
part of the triangulation of the convex hull, are not shown). Actually, edges A1 By
and AsBo are missing in the triangulation although their endpoints are element
vertices.

that intersect a specified segment (actually, an edge that must be constructed)
and results in the desired solution.
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Figure 7.5: Diagonal swapping. The quadrilateral formed by this pair of adjacent
triangles is a conver region, so its diagonal can be swapped.

Applied to each missing entity, this procedure computes the desired triangula-
tion which, however, is obviously not a Delaunay triangulation.
Two theoretical issues can be invoked to justify the above method.

Theorem 7.3 Given a set of segments, there exists a triangulation incorporating
these segments as element edges.

Theorem 7.4 Given an arbitrary triangulation and a set of segments (whose end-
points are vertices of this triangulation), a triangulation where these entities are
edges can be computed using only the diagonal swapping operator.

In fact, given an arbitrary triangulation, it is always possible to obtain a spec-
ified triangulation having the same vertices, by means of diagonal swapping only.

Thus, a non-cyclic process of diagonal swapping is a solution to the above
problem (note that the diagonal swapping is a reversible process). Nevertheless,
the previous theorems hold in two dimensions only.
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Constraints in three dimensions

The same problem is much more difficult in three dimensions. Actually, the con-
strained entities could be a series of edges and [aces (assumed to be triangular)
and, at the time all the endpoints of these entities have been inserted, some of
these edges and faces might not be present in the triangulation.

The problem is split into two parts. At first we enforce” the missing edges and,
once this has been completed, we enforce the missing faces (indeed, there exist
geometrical configurations where the three edges of a face exist while the face
itself is not formed, meaning that one or more edges of the current triangulation
pass through the triangle whose edges are the three above edges).

Theoretical results can be put forward to prove that an edge can be enforced
in a triangulation by means of generalized swapping and, if necessary, by creating
some points, the Steiner points, to overcome the situations where no more swaps
can be successfully done. This result can be seen as an extension of Theorem (7.4)
to three dimensions. Regarding the constraint by a face, the situation is not so
clear. In practice, heuristics must be used.

) s
Figure 7.6: The polyhedron consisting of the two tets My MsMsa and M1 MsMs;
(right) is convex and can be re-meshed using the three tets MyafSMs, MsaSMs
and MsafBMy. Conversely, this three element configuration can be re-meshed by

means of two elements. In the first transformation, a face has been removed while
i the second an edge has been removed.

Generalized swapping procedure. It is appealing to extend the two-dimen-
sional diagonal swapping by considering the pattern formed by a pair of adjacent
tetrahedra. This leads to a face swapping procedure whose converse application
results in removing an edge. In fact, the latter operator is only a simple occurrence
of a more general operator dealing with a general pattern, the so-called shell
(Chapter 2). A shell is the set of tetrahedra sharing a given edge. Then, the

7See the above footnote about a posteriori or a priors solutions for the problem.
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three-dimensional version of the swap operator can be seen as remeshing this
polyhedron by suppressing the common edge (Figures 7.6, 7.7 and Chapter 18).

a o et
My My My
M. ’ . Ms M. - . . - - - M3 M. Ms
Mo "My "My
J¢] J¢] g
Initial shell First solution Second solution

Figure 7.7: The wnitial pattern is the shell associated with edge af3. Two alternate
remeshings of this polyhedra are possible if it is conver.

Steiner points. A rather obvious example (Figure 7.8) shows that it is not
always possible to triangulate a region. Nevertheless, adding a single point in the
region depicted at the bottom of the figure leads to a solution. As a result, we could
expect to meet such situations when considering a constraint in a triangulation
and would like to use a similar method to obtain a valid solution. The question is
then how to detect such a pathology and how many points are strictly needed to
overcome the difficulty and where this (these) point(s) must be located. Actually,
this leads to finding the wvisibility kernel of a given polyhedron.

Following the previous discussion, we propose a heuristic method to enforce
a set of constraints. First, we deal with the problem of edge enforcement, then
we turn to the face enforcement problem. The key idea is to locally modify the
current triangulation by means of the generalized swapping operator, creating
some Steiner points when the previous operator fails.

Edge enforcement. The elements in the current triangulation that are inter-
sected by a missing edge are identified (such a set is called a pipe). Then we meet
two situations. Either only faces of these elements are intersected by the miss-
ing edge or the latter intersects, at least, one edge of the current triangulation.
The first case leads to applying the generalized swapping to every pair of adjacent
tetrahedra (in the case where the thus formed region is convex) while the second
situation leads to modifying the shell(s) of interest. Steiner points are created
when no more swaps can be successfully completed.

Except for the numerical problems, the above idea makes it is possible to
regenerate all the missing edges. It is now possible to consider the missing faces
(if any, since most of them exist at the time their edges are present in the mesh).
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Figure 7.8: The prism at top can be partitioned by simply using three tetrahedra.
The prism at the bottom, the so-called Schonhardt polyhedron, cannot be split with
three tetrahedra. This prism differs from the previous one in the way in which its
quadrilateral faces are decomposed into triangular faces. To find a valid mesh, a
point must be created in the visibility kernel of this polyhedron. This point is then
joined with all the external faces, thus resulting in a suitable mesh.

Face enforcement. A similar procedure is used. The set of elements corre-
sponding to a missing face are exhibited. In this set, a series of edges exists which
intersect the missing face. These edges are then swapped, using Steiner points in
some cases, until a missing face is intersected by only one edge. Then an ultimate
generalized swap results in the desired solution (assuming that the corresponding
pattern is convex).

This heuristic, while not numerically proved as, theoretically speaking, we use
arguments like “there exists a non-empty visibility kernel”, has proved to work
well in most concrete situations.

7.3 Classical Delaunay meshing

Delaunay triangulation algorithms serve as a basis for designing a meshing method,
a so-called Delaunay type mesh generation method.

In practice, the problem we face is now rather different. Up to now, we have
discussed a triangulation problem. This means a problem of triangulating the
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convex hull of a given set of points, but, for a typical meshing problem, the input
is a closed polygonal curve (polyhedral surface) defining a region (or several such
curves (surfaces) defining a multiply connected region). The problem is then
to generate a set of vertices in this not necessarily convex domain and to make
sure that the above (curve or surface) discretization is present in the resulting
triangulation. This means that we meet a problem of constrained triangulation as
a series of edges and faces must be present in the mesh.

Despite these differences, some of the previous material on Delaunay triangu-
lation, possibly with some extensions, can be applied to meshing problems when
the domain is supplied via a boundary discretization.

The intention that the mesh be suitable for applications takes several forms.
For classical Delaunay meshing, as discussed in this section, it is necessary that
the mesh elements should be well-shaped while their sizes should be adequate with
regard to the sizing information available in this case (basically, the sizes of the
boundary items serving as input data). However, applications typically require
meshes in which the element sizes, and even their shapes, vary across the mesh
according to a given specification. This point will be discussed in further sections.

A Delaunay type meshing method is generally one step of a mesh generation
procedure including three successive steps:

Step 1: the mesh parameterization (boundary description, specification or con-
struction of a function defining the element size distribution, etc.),

Step 2: the boundary discretization,

Step 3: the creation of the field vertices and elements, in other words, the De-
launay type method itself.

This general scheme is close to that found in other methods such as the advancing-
front type method (Chapter 6) and is slightly different from that of a method based
on an quadtree (Chapter 5) where the boundary mesh can be constructed during
the domain mesh construction.

In a Delaunay type method (Step 3 of the above scheme) the resulting mesh is
a mesh of the box enclosing the domain. Field points are created and inserted in
the current mesh so as to form the elements by means of the Delaunay kernel.

General scheme

The previous material can be now used to develop a Delaunay type mesh genera-
tion method. Here is a scheme for such a method:

e Preparation step.

— Data input: point coordinates, boundary entities and internal entities
(if any).

— Construction of a bounding box and meshing of this box by means of
a few elements.



252 MESH GENERATION

¢ Construction of the box mesh.
— Insertion of the given points in the box mesh using the Delaunay kernel.
o Construction of the empty mesh (which is boundary conforming).

— Search for the missing specified entities.
— Enforcement of these items.

— Definition of the connected components of the domain.
e Internal point creation and point insertion.

— (1) Internal edges analysis, point creation along these edges.

— Point insertion via the Delaunay kernel and return to (1) until edge
saturation.

e Domain definition.

— Removal of the elements exterior to the domain.

— Classification of the elements with respect to the connected components.
¢ Optimization.

Note that the domain definition is only achieved at the end of the process. In this
way, the convex mesh of the box is present throughout the process which facilitates
the necessary searching operations.

In the following sections, we describe the different stages of this general scheme
and we focus on the main difficulties expected.

Preliminary requirements. In contrast to advancing-front methods (Chap-
ter 6), no specific assumption is made on the nature of the input data related to
the boundary discretization. In particular, the orientation of the boundary items
is not required and does not offer any specific interest (whereas it may increase
the processing speed in quadtree-octree methods).

7.3.1 Simplified Delaunay type triangulation method

Without loss of generality, we define a convex “box” which is large enough to en-
close the domain. In this way we again encounter a situation where the previously
described incremental method can be used.

In fact, introducing a box, enables us to return to a convex hull problem where
the set S consists of the vertices of the given boundary discretization and four
(eight) additional points (the corners of the introduced box, a square in two di-
mensions, a cube in three dimensions).

Once the box has been triangulated by means of two triangles (five or six
tetrahedra), we find a situation where all the points in S (apart from the box
corners) are strictly included in this initial triangulation. Due to this simple prop-
erty, which will be maintained throughout the meshing process, the construction
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Figure 7.9: Inserting point P (P included in the current mesh). In this two-
dimensional example, only the triangles close to point P are displayed. The base
is reduced to the triangle (PoPsPg). The cavity is formed by the triangles in solid
lines. The external faces of this cavity are denoted by Fy, Fs,...,F;. The ball
consists of the elements in dotted lines. It is formed by joining P with the F;s.

method reduces to the case where the points that must be inserted are always
inside the current triangulation.

Thus, the construction method relies on properly defining the cavity associated
with the point to be inserted, knowing that this point necessarily falls within a
mesh element. This construction, for a given point P, is sequentially achieved as
follows:

1. we search in the current mesh for the element within which point P falls.
As a result we obtain a set of elements, the so-called base associated with P.
This base can be reduced to one element, two elements when P is located
on an edge (a face in three dimensions) or more when, in three dimensions,
P falls on one edge.

2. starting with the elements in the base, we visit by adjacency the current
mesh so as to determine the elements whose circumballs contain point P.
This results (possibly after a correction stage) in the desired cavity.

Then, this cavity is replaced by the corresponding ball and the mesh with P as
vertex is completed. This simple procedure is applied to all the points known at
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this stage (typically, the boundary points). At completion, we have created a mesh
of the box enclosing the domain and not a mesh of this domain.

7.3.2 Boundary integrity and domain identification
Boundary integrity

The mesh resulting from the above method is a mesh of the box enclosing the
domain. As previously seen, the boundary entities defining the domain, are not
necessarily present in this box mesh. In other words, we face a constrained meshing
problem. Typically, two approaches can be envisaged to solve this problem, one
being an a priori approach and the other an a posteriori approach. In the first
case, the boundary discretization is such that it naturally appears in the mesh,
in the second case, some boundary entities are missing in the current mesh which
need to be enforced.

Delaunay-conforming boundary mesh. Before constructing the box mesh,
we analyze the boundary discretization to see whether it is Delaunay or not. At
this time, this notion simply means that the boundary entities are automatically
present in the mesh based on their endpoints. If the given discretization is not
Delaunay, then we modify it (see Chapter 9) so as to meet this property. Hence,
boundary integrity is no longer a problem.

Boundary enforcement. We are given a mesh where some edges (faces) are
missing. In this approach, we return to the method discussed for the constrained
triangulation, and, by means of local mesh modifications, we modify the current
mesh in such a way as to ensure the existence of all boundary entities and to obtain
the desired boundary integrity.

Identifying the elements in the domain

When the boundary entities of a given domain are present in the mesh, it is possible
to identify the elements of the mesh which lie within this domain. Bear in mind
that we have triangulated a “box” enclosing the domain and that we now need to
discover this domain.

A rather simple algorithm, based on coloring (Chapter 2), can be used to
discover the connected component(s) of the domain. In this way the internal
elements can be determined where, furthermore, it will be possible to create the
field points. The scheme of this algorithm is as follows:

1. Assign the value v = —1 to all elements of the box mesh (where the boundary
entities now exist) and set ¢ = 0, ¢ being seen as a color.

2. Find an element having as a vertex one of the box corners and set it to the
value v = ¢, put this element in a list.
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3. Visit the three (four) elements adjacent by an edge (a face in three dimen-
sions) to the elements in the list:

e if the color of the visited element is not —1, the element has been already
colored, thus return to 3;

o if the face (edge) common with the visited element and the current
element in the list is not a boundary entity, assign the value v = ¢ to
this element, put it in the list and return to 3;

e if the common face (edge) is a boundary member, return to 3.

4. Set ¢ = ¢+ 1, empty the list and if an element with v = —1 exists, put it in
the list and return to 3. O

Variants of this algorithm can be used to complete the same task. Nevertheless,
at completion of such a procedure the elements are classified according to the
different connected components of the domain.

7.3.3 Field point creation

We now have a mesh for the domain where the element vertices are typically the
boundary points, meaning that no (or few®, in three dimensions) internal vertices
exist in the mesh. Thus, to fulfill the numerical requirements (well-shaped elements
and adequate sized elements), we have to create some field points in the domain.

Several methods can be envisaged to achieve this; among these, we focus here
on one method using the edges of the current mesh as a spatial support for the
field points.

Preliminary requirements. At first, a stepsize h is associated with all the
boundary vertices (by means of the average of the lengths (surface areas) of the
edges (faces) sharing a boundary vertex).

Edge analysis. The key idea is to consider the current mesh edges and to con-
struct a set of points on them. The process is then repeated as long as the creation
of a point on an edge is needed. In other words, as long as the edges are not sat-
urated. This iterative process starts from the mesh obtained after the domain
definition (see above), constructs a first series of points, inserts them into the
current mesh and repeats the processing on the resulting mesh.

Then, the current mesh edges are examined and their lengths are compared
with the stepsizes related to their endpoints. The goal of the method is to decide if
one or several points must be created along the visited edge. If so, both the number
of required points, n, and their location must be determined. The objective is
twofold. We want to introduce suitably spaced points along the edges in order to
saturate them and to obtain a smooth point distribution.

We demonstrate an arithmetic type of point distribution for an edge AB. If

8The necessary Steiner points.
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iii)

i)

Figure 7.10: i) Mesh of the box enclosing a domain for a mesh generation problem
i two dimensions. The four corners used to define the box enclosing the domain
can be seen together with some extra points defined between the box and the domain
for efficiency reasons. ii) Corresponding empty mesh. This mesh is nothing other
than a coarse discretization of the domain resulting from the previous coloring
algorithm. Actually, this mesh displays the edges where a first wave of field points
will be created. iii) Final mesh after internal point insertion and optimization.

e h(0) = ha denotes the stepsize associated with Py = A, one of the endpoints,
e h(n+ 1) = hp is that related to P,y; = B, the other endpoint,

we can define a sequence a; (and thus the corresponding P;s) as:

oy = h(0) +r
on = hin+1)—r (7.4)
a; = d(P;, Py1)

where d(P;, P;11) is the (Euclidean) distance between P, and P, 1, while r is the
ratio of the distribution. This requires us to solve the system:

n

&; = d
& 75
Qi1 — ;T

to find both r and n. The solutions are:

2d h 1) — h{0
EE————— and r = M .

h(0) + h(n + 1) n+2
As n must be an integer value, the solution is rescaled so as to obtain an exact
discretization of the edge AB in terms of n and r. The a;s and thus the sequence
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of points is determined at the time n and r are established. Then, with each
thus-defined point is associated a value, h, derived from the h’s of the supporting
edge. This means that the control space” is completed on the fly.

The process is repeated for all the current mesh edges and the series of points
created in this way is then filtered, simply using a (structured) grid (cf. Chapter 1).
This treatment is related to the fact that the vertices are well-positioned along
one edge but this property does not hold globally. For instance, one may observe
the case of all the edges emanating from one point. The retained points are
then inserted using the Delaunay kernel (Relation (7.2)) and the entire process
is iterated as long as some mesh edges need to be subdivided, i.e., are still not
saturated.

It could be noted that this rather simple method is independent of the spatial
dimension.

7.3.4 Optimization

Once the field points have been inserted, we have constructed a mesh for the
domain that needs to be optimized to some extent. The goal is to optimize the
mesh with respect to a quality criterion which is suitable for our purpose (a finite
element style computation). Indeed, while being Delaunay (in most of the domain,
in specific far from the boundaries), the mesh quality is not necessarily what is
needed. This means that the Delaunay criterion (i.e., a bound about the angles)
is not, stricto sensu, a quality criterion.

Up to now, we have considered a classical mesh generation problem. The aim is
then to produce well-shaped elements, in other words isotropic elements that are as
regular as possible (equilateral triangles in two dimensions and regular tetrahedra
in three dimensions!'®). In terms of sizes, we have very little information about
what is expected, so we try to conform as best we can to the sizes defined at the
boundaries and, elsewhere, to have a reasonably smooth variation.

While various quality measures have been proposed (Chapter 18), a “natural”
measure for the quality of a simplex is:

QK = am (7.6)
PK

where « is a normalization factor such that the quality of a regular element is one,

Bz is the longest edge of the element, i.e.; its diameter and pg is its inradius.

This quality adequately measures the shape or aspect ratio of a given element. It

ranges from 1, for an equilateral triangle (regular tetrahedron), to co, for a totally

flat element; to return to a range of variation from 0 to 1, the inverse of @k could

be used. Based on the above element quality, the quality of a mesh, T, is given
by:

Qu = max QK. (7.7

9The control space (see Chapter 1) is the current mesh considered together with the hs of its
vertices.
10A regular tetrahedron is an element with equilateral triangular faces.
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The aim is then to minimize this value. It could be observed that the point
placement method results, in principle, in a good location for the field points. If so,
then good quality elements may be expected. While effective in two dimensions,
this result is not so easily attained in three dimensions, mainly due to slivers.

Optimization procedures. The aim is to optimize the current mesh by means
of local modifications. In this respect, two categories of optimization techniques
can be identified (Chapter 18), the topological techniques that preserve the point
coordinates and modify their connections and the metric techniques that move the
points while preserving vertex connectivity.

The local optimization operators associated with these techniques make it pos-
sible to move the nodes (for example, using a weighted barycentrage); to remove
points; to remove edges (for example, by merging their endpoints) and to flip
edges (in two dimensions) or edges and faces (generalized edge swapping, in three
dimensions).

7.3.5 Practical issues

In this short section, we would like to give some indications regarding computer
implementation of the above scheme.

In terms of basic algorithms. Four steps of the previous scheme require care-
ful computer implementation. The major effort concerns an efficient implementa-
tion of the Delaunay kernel, then the boundary enforcement problem as well as
the optimization process must be considered together with the point creation step.
Regarding the Delaunay kernel, the operations that are involved are:

e a fast searching procedure so as to define the base,

e a convenient way of passing from one element to its neighbors to complete
the cavity by adjacency,

e an inexpensive evaluation of the circumcenters and the circumradii of the
mesh elements to evaluate the Delaunay criterion,

e a low cost update of a mesh when inserting a point.

Regarding the point creation step, the creation itself proves to be inexpensive
while the filter which is needed can be relatively time-consuming. A grid is then
constructed to minimize the cost of this task (for instance, using a bucket sorting
algorithm; see Chapter 2). Moreover, a cloud of points is inserted randomly (es-
pecially when the clusters contain a large number of points) in order to make the
process more efficient!!.

Regarding the boundary problem, local modification operators must be care-
fully implemented. Note that this is also of interest for the optimization step as
the required operators are basically the same.

1 Note that other more subtle strategies can be employed to minimize the overall cost of this
point insertion process.
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Remark 7.4 In the previous computational issues, we have not really mentioned
accuracy problems or round-off errors. Indeed, the only thing we need is to be sure
that a surface area (volume) is positive (to ensure the visibility criterion for a cavity
as already discussed or that an element is valid (at the boundary or optimization
step) which return to the same type of control.

In terms of memory resources and data structures. First, it could be
noted that a simple data structure probably provides a good chance of reaching a
desirable level of efficiency. Moreover, the memory resources must be minimized
as much as possible, which is the case with a simple structure.

Thus the internal data structure used must store (and maintain) the following
(according to the facilities of the programming language):

e the point coordinates,

e the element vertices,

the element neighbors (in terms of edge (face) adjacency),

the element circumcenters,

the element circumradii,

e some extra resources (for instance, for the grid used for the above filter).

7.3.6 Application examples

In this section, we give some application examples in both two dimensions and
three dimensions. Some statistics are also presented.

In two dimensions, a mesh quality, i.e., Qs of Relation (7.7), close to one can
be expected regardless of the polygonal discretization of the domain boundary
(meaning that equilateral triangles can be constructed'? whatever the size of the
given edges serving at their basis). In three dimensions, the expected value for
Qs depends on how good a tetrahedron can be constructed for each given surface
triangle. Hence, the three-dimensional quality is related to the quality of the
surface mesh serving as data.

Table 7.1, recorded in 1997, gives some statistics about a selected series of
examples of different geometries. In this table np is the number of vertices, ne is
the number of tetrahedra, target is the targeted value for the tetrahedron with
the worst quality while Qp; is the value obtained. The row 1 — 2 indicates the
percentage of elements for which 1 < Qx < 2, thus with a nice aspect ratio (i.e.,
close to a regular tetrahedron) while ¢ is the CPU time (HP 9000/735 at 100 MHz)
required to achieve the mesh (including i/o).

It should be noted that Qs is indeed in the range of target and that the
number of nicely shaped elements is greater, in proportion to the total number, if
the domain volume is large.

20bviously, if the point leading to this triangle falls within the domain.





