Committee login






Small thumbnail

Mathematics for Modeling and Scientific Computing

Small thumbnail

From Prognostics and Health Systems Management to Predictive Maintenance 1

Monitoring and Prognostics

Small thumbnail

Reliability in Biomechanics

Reliability of Multiphysical Systems Set - Volume 3

Small thumbnail

Production and Maintenance Optimization Problems

Logistic Constraints and Leasing Warranty Services

Small thumbnail

Digital Electronics 3

Finite-state Machines

Small thumbnail

Transformation of Collective Intelligences

Perspective of Transhumanism

Small thumbnail

Simulation of Transport in Nanodevices

Small thumbnail

Heat Transfer in the Chemical, Food and Pharmaceutical Industries

Industrial Equipment for Chemical Engineering Set

Small thumbnail

Simulation of Stochastic Processes with Given Accuracy and Reliability

Small thumbnail

Energy Autonomy of Real-Time Systems

Energy Management in Embedded Systems Set

Small thumbnail

Multidisciplinary Design Optimization in Computational Mechanics

Edited by Piotr Breitkopf and Rajan Filomeno Coelho, UTC, France

ISBN: 9781848211384

Publication Date: May 2010   Hardback   576 pp.

215.00 USD

Add to cart


Ebook Ebook


This book provides a comprehensive introduction to the mathematical and algorithmic methods for the Multidisciplinary Design Optimization (MDO) of complex mechanical systems such as aircraft or car engines.
We have focused on the presentation of strategies efficiently and economically managing the different levels of complexity in coupled disciplines (e.g. structure, fluid, thermal, acoustics, etc.), ranging from Reduced Order Models (ROM) to full-scale Finite Element (FE) or Finite Volume (FV) simulations. Particular focus is given to the uncertainty quantification and its impact on the robustness of the optimal designs. A large collection of examples from academia, software editing and industry should also help the reader to develop a practical insight on MDO methods.
We assume that the audience has some previous exposure to computational mechanics and optimization. Formal coursework in basic optimization algorithms and simulation methods would be helpful, but is not essential, as the concepts are progressively introduced throughout the text.
The book may by used in a graduate-level course on MDO for students, engineers and researchers, and in industrial short courses and seminars for a wide variety of technical backgrounds.


1. Multilevel Multidisciplinary Optimization in Airplane Design, Michel Ravachol.
2. Response Surface Methodology and Reduced Order Models, Manuel Samuelides.
3. PDE Metamodeling using Principal Component Analysis, Florian De Vuyst.
4. Reduced-order Models for Coupled Problems, Rajan Filomeno Coelho, Manyu Xiao, Piotr Breitkopf, Catherine Knopf-Lenoir, Pierre Villon and Maryan Sidorkiewicz.
5. Multilevel Modeling, Pierre-Alain Boucard, Sandrine Buytet, Bruno Soulier, Praveen Chandrashekarappa and Régis Duvigneau.
6. Multiparameter Shape Optimization, Abderrahmane Benzaoui and Régis Duvigneau.
7. Two-discipline Optimization, Jean-Antoine Desideri.
8. Collaborative Optimization, Yogesh Parte, Didier Auroux, Joël Clément, Mohamed Masmoudi and Jean Hermetz.
9. An Empirical Study of the Use of Confidence Levels in RBDO with Monte-Carlo Simulations, Daniel Salazar Aponte, Rodolphe Le Riche, Gilles Pujol and Xavier Bay.
10. Uncertainty Quantification for Robust Design, Régis Duvigneau, Massimiliano Martinelli and Praveen Chandrashekarappa.
11. Reliability-based Design Optimization (RBDO), Ghias Kharmanda, Abedelkhalak El Hami and Eduardo Souza de Cursi.
12. Multidisciplinary Optimization in the Design of Future Space Launchers, Guillaume Collange, Nathalie Delattre, Nikolaus Hansen, Isabelle Quinquis and Marc Schoenauer.
13. Industrial Applications of Design Optimization Tools in the Automotive Industry, Jean-Jacques Maisonneuve, Fabian Pecot, Antoine Pages and Maryan Sidorkiewicz.
14. Object-oriented Programming of Optimizers – Examples in Scilab, Yann Collette, Nikolaus Hansen, Gilles Pujol, Daniel Salazar Aponte and Rodolphe Le Riche.

About the Authors

Piotr Breitkopf is the head of the research axis "Multidisciplinary Design Optimization" of the Roberval Laboratory at the University of Technology of Compiègne in France. His research interests include meshfree methods and high performance computing.
Rajan Filomeno Coelho is a research engineer at the Building, Architecture & Town Planning Department (BATir) at ULB in Belgium. His current research interests include multidisciplinary design optimization, multicriteria evolutionary algorithms and metamodeling techniques.


DownloadTable of Contents - PDF File - 732 Kb

Related Titles

0.04294 s.