

Chapter 1

Introduction

1.1. Brief introduction to MATLAB

1.1.1. MATLAB software presentation

MATLAB (MATrix LABoratory) is an interactive software, developed by Math
Works Inc. and intended especially for digital signal processing. It is particularly
effective when the data format is vector or matrix.

MATLAB integrates digital calculus, data visualization and open environment
programming. MATLAB exists under both Windows and UNIX. Many
demonstrations are available using the command demo.

This digital simulation software enables a fast and simple visualization of the
obtained results.

MATLAB was primarily written in FORTRAN and C. However, MATLAB
knows to interpret commands, while a compilation of the source code is required by
FORTRAN and C.

MATLAB is especially designed for digital signal processing and for complex
digital system modeling and simulation. It is also suitable for processing data series,
images or multidimensional data fields.

MATLAB software general structure is provided in Figure 1.1.

2 Digital Signal Processing using MATLAB

Figure 1.1. MATLAB software general structure

The toolboxes extend the basic MATLAB functions and perform specific tasks
corresponding to different digital processing fields, such as image processing,
optimization, statistics, system control and identification, neural networks, fuzzy
systems, etc.

SIMULINK is an interactive software designed for modeling and simulating
continuous-time or discrete-time dynamical systems or hybrid structures containing
both analog and digital systems. It makes use of a mathematical equation set and
provides a large variety of predefined or user-defined functional blocks.

MATLAB has been developed for several years, especially as a consequence of
its use in the academic environment as an excellent education tool in mathematics,
engineering and science. In addition, MATLAB has already proven its utility for
scientific research and technological development.

Introduction 3

In order to run MATLAB, type the command matlab with UNIX shell (if a
MATLAB license under UNIX is available) or double click on the MATLAB icon if
the operating system is Windows. To exit MATLAB, type exit or quit. If
MATLAB is running under UNIX, you may have access to all UNIX commands
using just before the symbol! (example: !ls -l).

1.1.2. Important MATLAB commands and functions

who lists the variables in the current workspace

whos the same as previous, but lists more information about each variable

what lists MATLAB-specific files in directory

size provides the size of a data array

length provides the size of a data vector

help displays help text in Command Window

exit, quit exits from MATLAB

Table 1.1. General commands

dir, chdir,
delete, load,
save, type

similar to the corresponding DOS commands

pack consolidates workspace memory

Table 1.2. Commands related to the workspace

+, -, *, /, ̂ usual arithmetical operators

.
followed by an arithmetical operator for applying it to each array
element

' Hermitian operator

.' transpose operator

Table 1.3. Arithmetical operators

4 Digital Signal Processing using MATLAB

<, <=, >, >= usual relational operators

== equality operator

~= inequality operator

& element-wise logical AND

| element-wise logical OR

~ logical complement (NOT)

Table 1.4. Relational and logical operators

= variable assignment operator

,
used to separate the arguments of a function or the elements of a data
array

[] used to build data arrays

() used in arithmetical expressions

: used for indexing variables

; used at the end of a statement to cancel displaying any output

... used to continue a command on the next line

% used to enter a comment

Table 1.5. Special characters

ans default name of a variable or a result

eps spacing of floating point numbers

pi value of 3.14159...π =

i,j value of 1−

Inf IEEE arithmetic representation for positive infinity (1/0)

NaN IEEE arithmetic representation for Not-a-Number (0/0)

nargin returns the number of function input arguments

nargout returns the number of function output arguments

Table 1.6. Special variables and constants

Introduction 5

abs absolute value function

sqrt square root function

real real part of a complex variable

imag imaginary part of a complex variable

angle returns the phase angles, in radians, of a complex variable

conj complex conjugate operator

sign signum function

rem returns the remainder after division

exp exponential function

log natural logarithm function

log10 base 10 logarithm function

Table 1.7. Elementary mathematical functions

sin, cos, tan, cot, sec usual trigonometric functions

asin, acos, atan, acot, asec inverse trigonometric functions

sinh, cosh, tanh, coth, sech hyperbolic functions

asinh, acosh, atanh, acoth, asech inverse hyperbolic functions

Table 1.8. Trigonometric functions

max largest component

min smallest component

mean average or mean value

std standard deviation

sum sum of elements

cumsum cumulative sum of elements

prod product of elements

cumprod cumulative product of elements

Table 1.9. Data analysis functions

6 Digital Signal Processing using MATLAB

conv convolution and polynomial multiplication

deconv deconvolution and polynomial division

roots finds polynomial roots

poly converts roots to polynomial

polyval evaluates polynomial

residue partial-fraction expansion (residues)

Table 1.10. Polynomial related functions

zeros enables generation of zero arrays

ones enables generation of ones arrays

rand enables generation of uniformly distributed random numbers

randn enables generation of normally distributed random numbers

linspace enables generation of linearly spaced vectors

logspace enables generation of logarithmically spaced vector

det calculates the determinant of a square matrix

norm calculates matrix or vector norm

inv calculates matrix inverse

eig calculates matrix eigenvalues and eigenvectors

Table 1.11. Vector or matrix related functions

input gives the user the prompt and then waits for input from the keyboard

ginput
gets an unlimited or a predefined number of points from the current
axes and returns their coordinates

Table 1.12. Input functions

Introduction 7

plot plot vectors or matrices

subplot create axes in tiled positions

bar draws a bar graph

hist draws a histogram graph

polar makes a plot using polar coordinates

stairs draws a stairstep graph

stem plots the data sequence as stems

semilogx,
semilogy

semi-log scale plot: a logarithmic (base 10) scale is used for the x-axis
or y-axis

loglog
log-log scale plot: a logarithmic (base 10) scale is used for both the x-
axis and y-axis

xlabel,
ylabel adds text beside the x-axis or y-axis

title adds text at the top of the current axes

grid adds grid lines to the current axes

figure creates a new figure window

clf clears current figure

close all closes all the open figure windows

hold on/off holds/discards the current plot and all axis properties

axis controls axis scaling and appearance

legend puts a legend on the current plot using the specified strings as labels

gtext allows placing text with mouse

image displays a matrix as an image

Table 1.13. 1D and 2D graphical commands

plot3 plot lines and points in 3-D space

mesh/surf plots a 3-D mesh/colored surface

contour
plots a contour plot of a matrix treating its values as heights above a
plane

Table 1.14. 3D graphical commands

8 Digital Signal Processing using MATLAB

if conditionally executes statements

else, elseif used with if command

end terminates scope of for, while, switch, try and if statements

for repeats statements a specific number of times

while repeats statements an indefinite number of times

switch switches among several cases based on expression

break terminates execution of while or for loop

return causes a return to the invoking function or to the keyboard

pause pauses and waits for the user response

Table 1.15. Control commands

1.1.3. Operating modes and programming with MATLAB

The “online command” default operating mode is available after MATLAB gets
started. It displays the prompt >> and then waits for an input command. Running a
command usually results in creating one or several variables in the current
workspace, displaying a message or plotting a graph. For instance, the following
command:

v = 0:10

creates the variable v and displays its elements on screen. A semicolon has to be
added at the end of the statement if it is not necessary to display the result.

The previously typed commands can be recalled with the key ↑, while a
statement can be modified using the keys ← and →. You may also analyze the
effects on the command lines of the following keys: ↓, home, end, esc, del,
backspace and of the following key combinations: ctrl + →, ctrl + ←, ctrl + k.

Besides the “online command” operating mode, MATLAB can also create script
files and function files. Both of these are saved with the extension .m, but the
function files accept input arguments and return output arguments and operate on
variables within their own workspace.

In order to create a script file you have to select the menu File/New/M-file, while
to edit an existing file you have to first select File/Open M-file etc., and then choose
the appropriate file. After these commands, an edition session will be open using the

Introduction 9

chosen editor from Edit/View/Edit Preference. The edited file can be saved with the
menu File/Save As etc., followed by the file name (with the extension .m).

In MATLAB, many functions are predefined and saved as m-files. Some of them
are intrinsic, the others being provided by external libraries (toolbox): they cover
specific domains such as mathematics, data analysis, signal processing, image
processing, statistics, etc.

A function may use none, one or several input arguments and return none, one or
several output values. These different cases for a MATLAB function are called:

− one output value and no input argument:
variable_name = function_name

− no output value and one input argument:
function_name (argument_name)

− several output values and several input arguments:

[var_1, var_2, ...,var_n] = function_name (arg_1, arg_2,, arg_m)

For the last case, the first line of the file function_name.m has the following
form:

− function [var_1, var_2, ...,var_n] = function_name(arg_1, arg_2,, arg_m)

Usually, the input arguments are not modified, even if their values change during
the function execution. In fact, all the variables are local by default. Nevertheless,
this rule can be changed using the command: global variable_name.

In a MATLAB file, the comment lines have to begin with the symbol %.

The on-line help can be obtained using: help <function_name>. The first lines
of the file <function_name>.m beginning with % are then displayed. It is also
possible to search all the files containing a given keyword in their help using the
command: lookfor <keyword>.

NOTE.– The user-defined MATLAB files are recognized only in the current
directory, unlike the original MATLAB functions (toolbox, etc.). In order to make
available a user-defined file <file_name.m> outside the current directory you have
to type the command:

path(path,'<file_acces_path>/file_name>')

(see help path, help addpath).

10 Digital Signal Processing using MATLAB

The data from the current workspace can be saved in a *.mat file using the
command save. They can be reloaded using the command load. (Type help save
and help load for more information).

Another possibility is to use the same procedure to manage the files as in the C
language:

fid = fopen('x.dat','wb'); fwrite(fid,x,'double'); fclose(fd);

MATLAB is also able to manage other file formats, such as postscript.

1.1.4. Example of work session with MATLAB

Format

All the calculations are performed in MATLAB using the format double, but the
display format can be controlled using the function format (type help format).
Some examples are provided here after:

− format short: scaled fixed point format with 5 digits (default);
− format long: scaled fixed point format with 15 (7) digits for double (simple);
− format short e: floating point format with 5 digits;
− format long e: floating point format with 15 (7) digits for double (simple).

Scalars, vectors, matrices

MATLAB handles only one data type, because all the variables are considered as
floating point complex matrices. It is not necessary to declare or to size these
matrices before using them. In fact, when a variable is assigned a value, MATLAB
replaces the previous value if this variable exists in the work space; otherwise the
variable is created and sized properly.

A vector is a one row or a one column matrix, while a scalar is a 1×1 matrix.
MATLAB is optimized for matrix calculations. You should try to use matrix
operation as much as possible instead of loops in order to save execution time and
memory space.

The effectiveness of an algorithm can be measured using the functions flops
(number of floating point operations) and etime (elapsed time). Thus, the couple of
commands flops(0) and flops inserted just before and after an algorithm code line
returns the number of operations required. The function clock yields the present
time, while etime(t1,t2) provides the time elapsed between t1 and t2.

Introduction 11

EXAMPLE

t = clock;

%Algorithm;
time = etime(clock,t)

etime is not an accurate measure of the algorithm effectiveness because the
execution speed depends on the CPU.

EXERCISE 1.1.

Type a = 3 and then a = 3;

What is the signification of the symbol “;”?

There are some predefined variables. For instance pi = π, while i and j are
defined as the square root of –1. Type a = 1+2*i.

Pay attention to the use of these keywords for defining new variables: any
assignment replaces the predefined value by the new input (for instance the
assignment pi = 3 replaces the value π). Type clear pi to recover the initial
value of this variable.

You should avoid assigning i and j other values in a MATLAB program which
handles complex numbers.

EXERCISE 1.2.

Type i = 2, then a = 1+2*i and finally clear i.

clear command allows one or several variables to be removed.

Elementary operations

An operation involving 2 variables is possible only if the corresponding matrix
sizes match.

EXERCISE 1.3.

Type v = [1 2 3] then v = [1; 2; 3] and v(1).

As opposed to the case of C language, where the array index begins with 0, in
MATLAB it begins with 1: see the effect of v(0).

A vector filled with equally spaced values is defined in the following manner:
initial_value:increment:final value (for example v = 4:-0.1:3.2).

12 Digital Signal Processing using MATLAB

A matrix can be defined as indicated below:
− M = [1 2; 3 4];
− N(1,:) = [1 2] and N(2,:) = [3 4].

Type M(:,1), M(:,2), N(:,1) and M(:,2).

The pointwise operators: ".*", "./" or ".̂ " are useful for performing matrix
operations.

EXERCISE 1.4.

Define the following matrix: A = [exp(j) 1; 2 j] and see A', A.', Â 2,
A.̂ 2.

The relational operators: <, <=, >, >=, ~= and == compare couples of
elements belonging to equal size matrices and return a matrix filled with 1 (true) and
0 (false).

The logical operators such as: &, |, ~, any or all consider all the non-zero
elements as true and return a matrix filled with 0 and 1, according to the logical
operation result.

MATLAB has no pointer structures, but it automatically allocates (when using =)
and recovers (when using clear) memory space. For example, for solving A*x=y,
MATLAB automatically creates a vector for x.

Notice the difference between matrix right division and matrix left division:
X=A\B (equivalent to A-1*B) is the solution to A*X=B while X=A/B (equivalent to
A*B-1) is the solution to X*B=A.

EXERCISE 1.5.

 A = [1 2 1; 2 1 3; 4 0 5];
 y = [3; 2; 1];
 x = A\y
 z = A/y

The matrices can be concatenated either line by line or column by column.

N = [1 2]; P = [M; N]; then Q = [M’; N’];

The inverse submatrix extraction can be performed using brackets as indicated below:

Type B=A(1:3,:) and C=A([1 3],:).

Introduction 13

1.1.5. MATLAB language

MATLAB is a true programming language. However, it is an uncompiled
language and thus is not particularly suitable for developing very complex
applications. However, it is provided with all the necessary algorithmic structures
for rigorous programming.

The “for” loops

 for (expression)

 code lines;

 end

The “while” loops

 while (condition)

 code lines;

 end

The “if ... then” loops

 if (condition1)

 code lines;

 else if (condition2)

 code lines;

 else

 code lines;

 end

1.2. Solved exercises

EXERCISE 1.6.

Define a 4×3 matrix zero everywhere excepting the first line that is filled with 1.

b = ones (1,3); m = zeros (4,3); m(1,:) = b

m =

 1 1 1

 0 0 0

 0 0 0

 0 0 0

14 Digital Signal Processing using MATLAB

EXERCISE 1.7.

Consider the couples of vectors (x1, y1) and (x2, y2). Define the vector x so that:

x(j) = 0 if y1(j) < y2(j);

x(j) = x1(j) if y1(j) = y2(j);

x(j) = x2(j) if y1(j) > y2(j).

function x = vectors(x1,y1,x2,y2)

x = x1.*[y1 == y2] + x2.*[y1 > y2];

vectors([0 1],[4 3],[-2 4],[2 0])

ans =

 -2 4

EXERCISE 1.8.

Generate and plot the signal: y(t) = sin(2πt) for 0 ≤ t ≤ 2, with an increment of
0.01, then undersample it (using the function decimate) with the factors 2 and 16.

t = 0:0.01:2;
y = sin(2*pi*t);
subplot(311)
plot(t,y) ;
ylabel('sin(2.pi.t)');
title('Original signal');
t2 = decimate(t,2);
t16 = decimate(t2,8);
y2 = decimate(y,2);
y16 = decimate(y2,8);
subplot(312)
plot(t2,y2);
ylabel('sin(2.pi.t)')
title('Undersampled signal with a factor 2');
subplot(313);
plot(t16,y16);
ylabel('sin(2.pi.t)');
xlabel('Time t');
title('Undersampled signal with a factor 16');

You can save the figures in eps (Encapsulated PostScript) format, which is
recognized by many software programs. The command print -eps file_name
creates the file file_name.eps.

Introduction 15

Figure 1.2. Sinusoid waveform corresponding to different sample frequencies

EXERCISE 1.9.

Plot the paraboloid defined by the equation: z2 = x2 + y2 for -50 ≤ x, y ≤ 50.

N = 50; x = -N:N; y = -N:N;
% first solution (to avoid): two nested loops
%---
for k = 1: 2*N+1
 for l = 1: 2*N+1
 z1(k,l) = sqrt(x(k)^2 + y(l)^2);
 end;
end;
figure; meshc(x,y,z1);
xlabel('x'); ylabel('y'); zlabel('z');

fprintf('Type a key to plot the paraboloid using another
method\n'); pause;
% second solution: one loop
%---------------------------------------
z2 = zeros(2*N+1,2*N+1);

16 Digital Signal Processing using MATLAB

for k = 1: 2*N+1
 z2(k,:) = sqrt(x(k)^2 + y.^2); % pointwise multiplication
for y
end;
figure; meshc(x,y,z2);
xlabel('x'); ylabel('y'); zlabel('z');
fprintf('Type a key to plot the paraboloid using another
method\n'); pause;
% third solution (the best): no loop
%---
xc = x.^2; yc = y.^2;
mx=xc.'*ones(1,2*N+1); % line k of mx filled with the value
xc[k]
my=ones(1,2*N+1).'*yc; % column l of my filled with the value
yc[l]
z3 = sqrt(mx + my);
figure; meshc(x,y,z3);
xlabel('x'); ylabel('y'); zlabel('z');

Figure 1.3. Paraboloid plot

EXERCISE 1.10.

1. Generate 1,000 independent values x1,...,x1,000 of a zero-mean random
Gaussian variable with variance 4 using the function randn.

Plot the corresponding histogram and calculate the mean and the standard
deviation of the generated series using the functions hist, mean and std.

Find out the mean and the standard deviation of the random series x2
1, …,x2

1,000.
Then compare the obtained results with the theoretical results.

Introduction 17

clear all
n = 1000;

% If X ~ N(m,sigmâ 2) then Y = (X-m)/sigma ~ N(0,1)
Y=randn(1,n); X=2*Y;
[histoX,bins]=hist(X);
plot(bins,histoX);
xlabel('Bins');
ylabel('Number of values belonging to each bin');
title('Histogram of X using 10 bins');

% Find below 2 ways for displaying the results:

% 1) Character chain concatenation:
moyX=num2str(mean(X));
ecartX=num2str(std(X));
varX=num2str(var(X))
fprintf(strcat('\nMean of X = ',moyX, '\n'));
fprintf(strcat('St. dev. of X = ',ecartX, '\n'));
fprintf(strcat('Variance of X = ',varX, '\n\n'));

% 2) Use of formats, just like in C:
% (type "help format" for more explanations)
fprintf('Mean of X = %2.5f\n',mean(X));
fprintf('St. dev. of X = %2.5f\n',std(X));
fprintf('Variance of X = %2.5f\n',std(X)̂ 2);
Z = X.*X;
fprintf('\nMean of Z = %2.5f\n',mean(Z));
fprintf('St. dev. of Z = %2.5f\n',std(Z));
fprintf('Variance of Z = %2.5f\n',std(Z)̂ 2);
fprintf('Var Z - 2*(Var X)̂ 2 = %2.5f\n\n',std(Z)̂ 2-2*std(X)̂ 4);

Figure 1.4. Histogram of a Gaussian random variable

18 Digital Signal Processing using MATLAB

Mean of X = 0.0085986
St. dev. of X = 1.963
Variance of X = 3.8533

Mean of X = 0.00860
St. dev. of X = 1.96298
Variance of X = 3.85328

Mean of Z = 3.84950
St. dev. of Z = 5.55695
Variance of Z = 30.87972
Var Z - 2*(Var X)̂ 2 = 1.18418

2. Use the function rand to generate 1,000 independent values of the random
variable X defined by:

;1)1(;)0(;)1(1010 ppXPpXPpXP −−=====−=

where 0p and 1p are the probabilities to be entered by the user.

function va_gen(n,po,p1)
help va_gen; Y = rand(1,n);
X = -1*[Y< po*ones(1,n)] + 1*[Y>((po+p1)*ones(1,n))];
% If Y is a uniformly distributed variable between 0 and 1, then the X
current value is obtained from the combination of 2 tests, so that X = -
1*(Y<p0) + 1*(Y>p0+p1):
% - if Y < p0 (this case occurs with the probability p0) then
% the first test is true and the second is false, so X = -1
% - if Y > p0+p1 (this case occurs with the probability 1-p0-p1)
% then the first test is false and the second is true, so X = 1
% - if p0 < Y < p0+p1 (this case occurs with the probability p1)
% then the two tests are false, so X = 0
prob = hist(X,3)/n;
fprintf('\np [X = -1] = %1.4f\n', prob(1));
fprintf('p [X = 0] = %1.4f\n', prob(2));
fprintf('p [X = 1] = %1.4f\n\n', prob(3));

When the function va_gen is called:
va_gen(1000,0.1,0.5)

it provides the following result:

If Y is a uniformly distributed variable between 0 and 1, then the X current
value is obtained from the combination of 2 tests, so that X = -1*(Y<p0) +
1*(Y>p0+p1):

- if Y < p0 (this case occurs with the probability p0) then
 the first test is true and the second is false, so X = -1
- if Y > p0+p1 (this case occurs with the probability 1-p0-p1)
 then the first test is false and the second is true, so X = 1

Introduction 19

- if p0 < Y < p0+p1 (this case occurs with the probability p1)
 then the two tests are false, so X = 0

p [X = -1] = 0.1000
p [X = 0] = 0.4840
p [X = 1] = 0.4160

EXERCISE 1.11.

Plot in polar coordinates the poles of the filter having the following transfer function:

1 2
1()

1
H z

az bz− −
=

+ +

The values of a and b are entered by the user and the function returns the poles.
(use the commands roots and polar).

function c = filter_bis(a,b)
c = roots([1 a b]); % Comment: H(z) = poly(c)
fprintf('The poles are:\n'); z1 = c(1,:)
z2 = c(2,:)
if (abs(z1)> 1 | abs(z2) > 1)
 fprintf ('There is at least an instable pole\n');
else
 clf; figure; polar(angle(z1),abs(z1),'r+');
 % Second solution: use zplane
 hold on; polar(angle(z2),abs(z2),'r+');
 legend('Polar plot of H(z) poles',0);
end

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Polar plot of H(z) poles

Figure 1.5. Function call example – filter_bis (1.5,1)

20 Digital Signal Processing using MATLAB

The poles are:

z1 =

-0.7500 + 0.6614i

z2 =

-0.7500 - 0.6614i

EXERCISE 1.12.

Generate the signal: x(t) = A⋅sin(2πft + φ) + b(t), t = 0..1024, where φ is a uniformly
distributed random variable on [0, 2π] and b(t) is a white Gaussian noise with mean zero
and variance one (use rand and randn). A and f are chosen by the user.

Estimate the mean value, the autocorrelation function (xcorr) and the spectrum
of x(t) using the periodogram and the correlogram (use fft and fftshift).
Compare the obtained results to the theoretical results. Change A in order to control
the SNR.

function noisy_sin(A,f)
N = 1024; % Number of calculated frequencies
nech = 1024; % Number of samples
t = 0:nech;
b = randn(1,nech+1);
phi = 2*pi*rand(1);
x = A*sin(2*pi*f*t+phi)+b;
fprintf('\nMean of x(t) = %2.4f\n',mean(x));
fprintf('Mean of b(t) = %2.4f\n',mean(b));
cx = xcorr(x);
% plot(cx);
% Correlogram based spectrum estimation:
sx_correlo = (abs(fft(cx,N))).̂ 2;
sx_correlo = sx_correlo / max(sx_correlo);
% the first N/2 values correspond to 0<=f<0.5
% the last N/2 values correspond to 0.5<=f<1 (or -0.5<=f< 1)
sx_correlo = fftshift(sx_correlo);
% The spectrum is centred around 0:
% the first N/2 values correspond to -0.5<=f<0
% the last N/2 values correspond to 0<=f<0.5

% Periodogram based spectrum estimation:
%--
sx_periodo = (abs(fft(x,N))).̂ 2;
sx_periodo = sx_periodo / max(sx_periodo);
sx_periodo = fftshift(sx_periodo);

% SNR estimation for a noisy sinusoid
%--

Introduction 21

vector(1:N) = sx_periodo;
vector(N+1:2*N) = sx_correlo;

plot(-0.5:1/N:0.5-1/N,10*log10(sx_correlo(1:N)),'r-',-0.5:1/N:0.5-
1/N,10*log10(sx_periodo(1:N)),'b:');
legend('Correlogram','Periodogram',0);
xlabel('Normalized frequency');
ylabel('Magnitude spectrum [dB]');
axis([-0.5 0.5 min(10*log(vector)) 0]);

% 0 dB <=> 10.log10 (Psignal + Pnoise)
% background_noise <=> 10.log10 (Pnoise) < 0
% Psignal = Â 2/(2.N) (periodogram)
% Pnoise = sigmâ 2 = 1

SNRth = Â 2/2;

fprintf('\nSignal SNR = %2.4f dB \n',10*log10(SNRth));
fprintf('\t=> Theoretical mean background noise corresponding to the
periodogram estimated spectrum\n');
fprintf('\t in the range [-0.5:%1.2f] & [%1.2f:0.5] = %2.4f dB\n\n',-f-
0.05,0.05+f,-10*log10(N*SNRth/2+1));

background_noise1 = mean(10*log10(sx_periodo(1:round(N*(0.45-f)))));
background_noise2 = mean(10*log10(sx_periodo(round(N*(0.65+f)):N)));

mean_background_noise=mean([background_noise1,background_noise2]);

fprintf('Mean background noise corresponding to the periodogram estimated
spectrum \n');
fprintf('in the range [-0.5:%1.2f] & [%1.2f:0.5] = %2.4f dB\n',-f-0.05,
0.05+f, mean_background_noise);
fprintf('\t=> Estimated SNR = %2.4f dB \n',10*log10((2/N)*(-1+exp(-
noise_moy*log(10)/10))));

Function call example: noisy_sin(2,0.15)

Mean of x(t) = 0.0529
Mean of b(t) = 0.0499

Signal SNR = 3.0103 dB
 => Theoretical mean background noise corresponding to the periodogram
estimated spectrum in the range
[-0.5:-0.20] & [0.20:0.5] = -30.1072 dB

Mean background noise corresponding to the periodogram estimated spectrum in
the range [-0.5:-0.20] & [0.20:0.5] = -29.7643 dB
 => Estimated SNR = 2.6670 dB

22 Digital Signal Processing using MATLAB

The SNR estimation error is related to several odd spectrum values, which lead
to a biased mean background noise level.

Figure 1.6. Spectral representation of a noisy sinusoidal signal

