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1.1. Cohesion forces 

In a real structure, it is necessary to accept the existence of a system of internal 
cohesion forces which originate from intermolecular actions and which allow, 
among other things, the preservation of the initial form of the structure. 

In a structure made of a material we shall assume to be elastic3, let us isolate a 
particle of matter specified by a very small sphere around a point M (Figure 1.1a).  
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Figure 1.1. A spherical domain’s deformation around point M 

When this structure is loaded, point M undergoes a displacement (Figures  
1.1b and 1.1c) which we shall assume to be very small when compared to the 
dimensions of the structure, so that the latter’s shape does not vary perceptibly. It is 
shown for all materials made up of standard structures, that the small spherical 
domain around the point M first deforms weakly4 becoming an ellipsoid. The shape 
and the orientation of that ellipsoid change not only with the position of point M in 

                                   
3 We shall return later on (section 1.3) to this notion of elastic material. 
4 The deforming steps (ellipsoid) of Figures 1.1 and 1.3 are greatly exaggerated for standard 
metal alloys; in reality the variation in the shape is imperceptible as the displacement of all 
the points such as M is of very small amplitude compared to the dimensions of the structure. 
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Figure 1.15. Components of a plane state of stresses 

The complete plane state of stresses is represented in Figure 1.16 by superposing 
the three simple states. 
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Figure 1.16. Complete plane state of stresses 

We may regroup the characteristic components in a column matrix15: 
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15 Note: the terms of this column matrix are not the three components of the same stress 

vector. Remember that, in fact, yxC xyx)x,M(
τ+σ=  and yxC yyx)y,M(

σ+τ= . 
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2.4.4. Summary 
All the examples of the loaded structures in sections 2.4.1 to 2.4.3 have general 

properties that can be summarized in the following table. 

structure Loading and degrees of freedom of a structure 

1

x

y

z

i

 

 any geometric structure; 
 composed of a linear elastic material; 
 having links with its surroundings; 

 associated with structural or global coordinates ( z,y,x ); 
 having “n” points (i) = [1,…n] within and on its external 

surface. 
loads  

1

x

y

z

i
Xi

Yi

Zi

 

 each point can be loaded by several force components, for 
example Xi, Yi, Zi at point (i); 

 the load vector is represented as:      { }
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 the loads can include moments acting on the small zones 
surrounding points (i). 

degrees of freedom  

1

x

y

z

i
vi

ui
wi

 

 the displacement of every point (i) has as components ui, vi, 
wi. These are the degrees of freedom (dof); 

 the dof vector is represented as:       { }
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 the dof can include rotations of small areas surrounding 
points (i). 

characteristic equations  
behavior equation: 

 
{ } [ ] { }Fd •α=  

 
work/potential energy: 

{ } [ ] { } .pot
T EFF

2
1W =•α•=

{ } { } .pot
T EdF

2
1W =•=  

 [ ]α is the flexibility matrix. It is square and symmetric; 
 it has the same number of lines and columns as the degrees 

of freedom; 
 there is a dual association between a force component and 

its dof: 
– geometric association: same geometric direction for the 

force and its dof; 
– energy association: the work developed results from the 

product of the forces and their associated dof.  

[2.91] 



Mechanical Behavior of Structures: An Energy Approach     117 

same structure, same nodes (1) and (2), same loads F1 and F2, different linking 
conditions 

1 2

F2F1

 

 incomplete positioning of the 
structure before loading: 
“hypostatic” positioning. 

the structure is not 
“properly linked” 

 [ ]α  cannot be 
defined 
 equation 

{ } [ ] { }Fd •α= is not 
defined 

1 2

F2F1

 

 complete positioning of the 
structure before loading is called 

“isostatic” positioning  
(the equations of equilibrium are 

sufficient to obtain the link forces on 
the structure under loading). 

 the structure is 
“properly linked” 

 the flexibility matrix 
[ ]α  exists and varies 

with the rigidity of the 
spiral spring  

 equation 
{ } [ ] { }Fd •α= exists 

1 2

F2F1  

 the complete positioning of  
the structure before loading is called 

“isostatic” positioning  
(a particular case of the previous 

one where the rigidity of the spiral 
spring becomes infinite). 

 the structure is 
“properly linked” 

 the flexibility matrix 
[ ]α  exists 

 equation 
{ } [ ] { }Fd •α= exists 

1 2

F2F1

1 2

F2F1  

1 2

F2F1  

 the complete positioning of  
the structure before loading is called 

“hyperstatic” positioning  
(the equations of equilibrium are 
no longer sufficient to obtain the 

link forces on the structure  
under loading). 

 the structure is 
“properly linked” 

 the flexibility matrix 
[ ]α  exists and varies 

with the characteristics 
of the links and their 

number 
 equation 

{ } [ ] { }Fd •α= exists  

Figure 2.39. Different connections to the surroundings for the  
same structure and loading 
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 “flexibility” approach of a structure “stiffness” approach of a structure 
“n” points or nodes selected on the structure 

{ }F  loading (forces, moments) acting on “n” nodes 

{ }d  degrees of freedom (linear, angular displacements) 

“associated” with the loading (see [2.91]) 

structure not properly linked 
(not sufficiently linked to its environment, i.e. in an hypostatic manner) 

behavior equation: 

{ } [ ] { }Fd •α=  
the flexibility matrix [ ]α , inverse of the 

stiffness matrix [ ]k , does not exist (it cannot 
be defined),this equation cannot be used 

{ } [ ] { }dkF •=  

the stiffness matrix [ ]k  exists, it is a 
singular matrix (it cannot be inverted) 

 

same structure properly linked 
(the previous structure is linked in an isostatic or hyperstatic manner to its surroundings 

behavior equation: 
 

{ } [ ] { }Fd •α=
 

equation not usable (see above) 
 
 
 
 
 
 
 
 

{ } [ ] { }∗∗∗ •α= Fd  

the flexibility matrix  ⎥⎦
⎤

⎢⎣
⎡α∗ , inverse 

of the stiffness sub-matrix  k ⎥⎦
⎤

⎢⎣
⎡ ∗ , 

exist 

to start with, same equation as above 
{ } [ ] { }dkF •=  

 
application of the linking conditions 
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{ } { }∗•⎥⎦
⎤

⎢⎣
⎡ ∗=∗ dkF  

the stiffness sub-matrix [ ]  ∗k exists, and can be 

inverted 

In the following, in order to simplify the notations, and except in special cases,  
the transcriptions { }F , { }d , { }k  will also be used to describe the  

behavior of a properly linked structure 

[2.122] 
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(plates or shells) structures. For these kinds of structures, total integration of 
modeling choice in CAD software is not presently available. The designer has to 
intervene in the CAD model to change it into a model compatible with elements to 
be used45. For the time being, we shall only indicate the existence of other types of 
elements shown in the figure. These elements shall be dealt with in Chapter 5.  

 
Figure 3.36. Topology of the main types of finite elements 

                                   
45 It has already been indicated that beam elements, for example, were preferred for both 
precision of results and level of discretization to elements of plane stress (see section 3.2.4.5). 
They will also be preferred to solid elements (see Chapter 5). The same is valid for plate 
elements, of higher performance than solid – or volumic – elements.  
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Figure 4.15. Imposing a displacement  

NOTES 

 This “stratagem” helps in imposing (linear or angular) displacements at 
specified places of the structures. These displacements remain unaffected by the 
intensity of the “real” loads that can be applied thereafter. 
 

 This method is commonly used in calculation codes to impose non-zero 
boundary displacement-conditions. 

4.2.4. Assembly of a truss element and a beam element under simple plane bending  

 Object: 

The finite elements for assembly are indicated in Figure 4.16. 
 
Write the stiffness matrix of the structure obtained after assembly. 
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The reader can make sure that in this manner it is possible to obtain each of the 
terms of the global stiffness matrix as they are seen in the figure. 

 

stiffness matrix element n°1

global stiffness matrix 

stiffness matrix element n°2

stiffness matrix element n°3

 

Figure 4.34. Assembly method of the element stiffness matrices 
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the behavior equation in the local system of the element. The transfer matrix defined 
in section 4.4.3 enables us to find the values of the dof mentioned in the local 
system of each element. We can then write: 

{ } [ ] { }
LocalLocalLocal

3el3el3el dkF •=  

which shall give us the values of the nodal forces in the local system. These are 
represented on Figure 4.36. They consist of: 

– internal linking actions between adjacent elements; 

– external loading; 

– external linking actions. 
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Figure 4.36. Nodal forces (local coordinates-system): equilibrium of beam elements 
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Figure 5.18. Stresses in a bending plate 

5.4.2. Resultant forces and moments for cohesion forces 

On the basic domain shown in Figure 5.18, we can define elementary resultant 
forces and moments for cohesion forces acting on the faces normal to 

G
x  and 

JG
y . In 

order to do this, we use a similar approach to that in Chapter 1, section 1.5.1. The 
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Dimensioning of a structure 

(static loading case, linear elastic domain) 
 

links with vicinity
application of loads

{ } [ ] {}strstrstr dKF •=

(hypothesis of a linear elastic behavior)

making up a finite elements model from the drawings of the structure

application of boundary conditions

constitution and resolution of the system

definition of the loading:
- from information known by the manufacturer

- by application of specific regulation
to the concerned application

verification of rigidity:

{} {} maxstrstr dd <

plotting of stresses in the elements

use of a  resistance criterion :
calculus of a stress said to be “equivalent stress”: σeq

sC
admissiblemax

éq
σ

≤σ

verification of resistance:

supplied
by specifications

σeq

“ ”

safety factor C :
supplied by experiment or
application of regulation specific
for the concerned application.

s

 

Figure 7.2. General dimensioning procedure for static loading 
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a) real structure: section of
tubular welded chassis

b) beam elements model
for a global study

bundle of rigid beam elements ensuring the transmission
of nodal forces since the remainder of the chassis until the local model

(we can sometimes find this option in softwares)

Clamping (6 dof blocked)
to avoid rigid body movements
Xk ; Yk ; Zk

Lk ; Mk ; Nk

application of nodal forces read
on internal node i of beam element M

Xi ; Yi ; Zi

Li ; Mi ; Ni

application of nodal forces
read on internal node j of beam element N
Xj ; Yj ; Zj

Lj ; M j ; Nj

element no. M

element no. P

element no. N

node no. k

node no. i
node no. j

relaxation of 3 dof at nodes
of rigid beam elements

(spherical joint)

rigid beam elements

plate elements

local study

c) model made of plate elements for local study

i

k

j

force

 

Figure 8.5. Global model and local model 
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8.51: all the translation dof Tx must be blocked. The structure then conserves a 
possibility of two plane rigid-body motions (middle plane (yz)). Translation Ty and 
rotation around axis x  will be removed by canceling all the translation dof Ty of 
nodes on the “die-body” bearing zone. 

 
The remaining motion of translation Tz will be eliminated by blocking any node 

following this direction. 
 
 

xy

z

Ty

on all
 the nodesTxT

Tx

Tz

Tx

TxT

TxT

TxT
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Figure 8.51. Boundary conditions for the half body model 

8.4.2.6. Other aspects of the modeling 

 Material properties 

All the solid elements are in the same material (Young’s modulus and Poisson’s 
ratio). 

 Mesh generation 

The mesh generation of the body model in solid elements, done for example 
through integrated CAD-Finite element software, does not pose a problem. Given 
the weak radius of the curve (geometric singularity) and the significant effort values, 
the zone in the hollow of the goose neck will show large stress concentration. The 
operator will have to make the meshing more dense in this zone. 
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We can have an idea of the increased torsion flexibility of the split tube by 
analyzing the deflected shapes due to torsion in Figure 9.36. 

 

M-

M

M

M-

M

a) uniform torsion
 closed circular tube

c) uniform torsion
split circular tube

b)  torsion with constrained warping 
split circular tube

clamped support
(warping is prevented)

free warping

 

Figure 9.36. Deflected shapes due to torsion. The torsional rigidities decrease from a) to c) 

9.3.2.6. Torsion with constrained warping 

Figure 9.36b shows the nature of the deflected shape for the split tube whose one 
end is clamped. The clamped section cannot warp. It can then be easily conceived 
that, for an identical torsional moment, rotation due to torsion in Figure 9.36 shall be 
less in case b) than in case c)35. The torsional rigidity increases when the relative 

                                   
35 As a general note, when we eliminate the displacement possibilities of certain zones of a 
linear elastic structure, it is evidently less deformable, i.e. more rigid. 
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Dimensioning of a pre-tightened bolt  

estimation of the working forces on a fastener: using procedure[11.6] leads to: 

  – a working tensile force: X 

  – a working tangential force: 22
T ZYF +=  

initial tensile force necessary in the screw shank (see [11.10]) 

f
F

25.1X 8.0X T
0 +≥

 
(f: coefficient of mutual friction of the surfaces in contact) 

tightening torque necessary to create this tension (approximate value) 

dX2.0L 00 ××≅    (d nominal diameter of the shank) 

initial stresses in the screw shank when tightening 

normal stress: 

0

0
s
X

=σ   ( 2
00 r s π=  minor thread root cross-section) 

maximum shear stress (approximate value): 

0

00
i
r

2
L

×=τ     (
2
r 

i
4

0
0

π
= ) 

equivalent normal stress of Von Mises: 

22
Mises.V.eq 3τ+σ=σ  

criteria of resistance 

we must verify: 

⇒ rR 7.0≤σ  

⇒ eMises.V.eq R≤σ  

[11.22] 
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11.3.5. Summary 

The behavior of the riveted assembly may be summarized as follows. 

Riveted joint fastening together parts 1 and 2 
 forces on “n” fasteners of center (i), each one with shank section “s” 

G geometric center of “n” sections: 0zy
n

1i
i

n

1i
i ==∑∑

==
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polar quadratic moment: ( )∑
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+×=
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[11.23] 
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 For all practical purposes, we can rapidly characterize an “equivalent” weld 
section by means of specific additional software working from input of the 
geometry of the section, and giving the characteristics of a beam cross-section. 
Such software is often integrated as a specific function in a finite element 
software.  

11.4.3. Summary 

Dimensioning of a welded joint 

a weld bead is reduced to its bead cross-section that is flattened against the plane 
of interface: 
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e o
f i

nt
er

fa
ce

bead cross-section
ai×Aiai
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a welded joint (between parts 1 and 2) is reduced  
to an “equivalent” weld section 

xy

z
G

Ai

ai

"equivalent” weld section

 
- G is the geometric center: 0ydS

S

=∫ ;  0zdS
S

=∫  

- y  and z  are the principal quadratic axes: 

  0yzdS
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stresses on the centerlines of the “equivalent” weld section 
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Appendix C 

List of Summaries 

Part I 

Chapter 1. The Basics of Linear Elastic Behavior 

Materials homogenous, isotropic, elastic, linear: Hooke’s law for uniaxial traction or 
compression (along the x  axis) [1.6] 
Materials homogenous, isotropic, elastic, linear: plane state of stresses in the plane 
(xy) [1.18] 
Normal resultant Nx and its consequences [1.30] 
Shear resultant yT  and its consequences [1.31]  

Shear resultant zT  and its consequences [1.32]  
Torsion moment Mt  and its consequences [1.33]  
Bending moment yMf  and its consequences [1.34] 
Bending moment zMf  and its consequences [1.35] 
 
Chapter 2. Mechanical Behavior of Structures: An Energy Approach 

Elementary potential energies in the domain (S×dx) of a straight beam [2.34] 
Different expressions for potential energy under plane stress [2.44] 
Loading and degrees of freedom of a structure [2.91] 
Same structure, same nodes (1) and (2), same loads F1 and F2, different linking 
conditions [2.39] 
“Flexibility” approach of a structure; “stiffness” approach of a structure [2.122] 
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Chapter 3. Discretization of a Structure into Finite Elements  

Case of coplanar local and global systems of coordinates behavior equation of the 
element Figure 3.9 
Behavior of the truss element under traction-compression, in the local and global 
coordinate systems Figure 3.8 
Behavior of the beam element under torsion, in the local and global coplanar 
coordinate systems Figure 3.10 
Behavior of the beam element bending in the plane (xy) in the local and global 
coplanar coordinate systems Figure 3.14 
Behavior of the triangular element working as membrane, in the local and global 
coplanar coordinate systems Figure 3.23 
Topology of the main types of finite elements Figure 3.36 
 
 
Part II 

Chapter 5. Other Types of Finite Elements 

Behavior relation of the element: case of any local and global coordinate systems 
[5.1] 
Behavior of the beam element: in the local and in the global coordinate system 
Figure 5.8 
Behavior of the triangular element for the plane state of stress: in the local and in the 
global coordinate system Figure 5.11 
Behavior of the quadrilateral element in plane state of stress: in the local and in the 
global coordinate system Figure 5.15 
Behavior of the complete plate elements (plane stress + bending): in the local and in 
the global coordinate system Figure 5.24 
Tetrahedric and hexahedric solid elements: in the local and in the global coordinate 
system Figure 5.31 

Chapter 6. Introduction to Finite Elements for Structural Dynamics 

Dynamic behavior of a structure (free vibrations; without damping; structure 
properly linked) [6.29] 

Chapter 7. Criteria for Dimensioning 

Dimensioning of a structure (static loading case, linear elastic domain) Figure 7.2 
Approximative curve of the fatigue test [7.21] 
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Chapter 8. Practical Aspects of Finite Element Modeling 

Beam element Figure 8.1 
Complete plate elements (membrane + bending) Figure 8.2 
Solid 3D elements Figure 8.3 
The same structure modeled by each of the three element types Figure 8.4 
Use of the software; section 8.5.3 
 
 
Part III 

Chapter 9. Behavior of Straight Beams 

Coordinate system linked to a current cross-section [9.1] 
Traction-compression [9.15] 
The torsional moment is merged with the longitudinal moment, Mt = Mx in any of 
the following cases [9.21] 
Uniform torsion of a beam with any cross-section [9.27] 
Pure bending in the main plane (xy) [9.33] 
Plane bending in the main plane (xy) [9.59] 
Plane bending in the main plane (xz) [9.60] 
Small displacements of a current cross-section [9.61] 

Chapter 10. Additional Elements of Elasticity 

Stresses on a facet of any orientation [10.9] 
Complete state of stresses; “deformations-stresses” behavior relation [10.21] 
Any complete state of stresses [10.27] 
 
Chapter 11. Structural Joints 

Bolted joint of two parts 1 and 2; estimation of forces on “n” fasteners with center 
(i) and section “s” [11.6] 
Dimensioning of a pre-tightened bolt [11.22] 
Dimensioning of a riveted joint [11.23] 
Dimensioning of a welded joint [11.28] 

Appendices 

A: Modeling of Common Mechanical Joints 
B: Mechanical Properties of Materials  


