Contents

PREFACE	ix
CHAPTER 1. FABRICATION OF MICROELECTRODES USING ORIGINAL "SOFT LITHOGRAPHY" PROCESSES	1
 1.1. Introduction. 1.2. Materials and methods 1.2.1. Selective peeling . 1.2.2. Localized passivation 1.3. Selective peeling process development and results 1.4. Localized passivation process development and results 1.5. Conclusions. 1.6. Bibliography 	1 2 3 4 5 8 8
CHAPTER 2. LOVE WAVE CHARACTERIZATION OF MESOPOROUS TITANIA FILMS	11
 2.1. Introduction. 2.2. Love wave platform. 2.3. Mesoporous materials. 2.4. Environmental ellipsometric porosimetry 2.4.1. Measurement principle. 2.4.2. Sorption isotherm. 2.5. Experimental set-up. 	11 12 13 15 15 16 17
2.5.1. Mesoporous sensitive layer deposition	17

2.5.2. Test bench
2.5.3. Results
2.6. Numerical simulations
2.6.1. Love wave propagation numerical model
2.6.2. Simulation of sensor frequency response
2.6.3. Extraction of shear modulus of the TiO ₂ film
2.7. Causes of mechanical stress induced by humidity sorption
2.7.1. Capillary contraction
2.7.2. Swelling and residual sol-gel stress
2.8. Conclusions
2.9. Bibliography
CHAPTER 3. IMMUNOSENSING WITH SURFACE ACOUSTIC
WAVE SENSORS: I OWARD HIGHLY SENSITIVE AND
SELECTIVE IMPROVED PIEZOELECTRIC BIOSENSORS
Najia FOURATI and Chouki ZERROUKI
3.1. Introduction
3.2. SAW sensors and measurement systems
3.2.1. SAW transducers
3.2.2. Measurement instrumentation
3.2.3. An example of SAW device and
conditioning system
3.2.4. SAW immunosensors' potential and
their possible improvement. 42
3.3. Immunosensing applications to evaluate
SAW device performances
3.4. Survey of clinical applications of
SAW immunosensor systems
3.4.1. Cardiac biomarker detection
3.4.2. Bacterial detection
3.4.3. Cell detection
3.4.4. Virus detection
3.4.5. Cocaine detection
3.5. Conclusion
3.6. Bibliography
CHAPTER 4. AC NANOCALORIMETER ON SELF-STANDING
PARYLENE MEMBRANE
Emmanuel ANDRE, Aitor FERNANDEZ LOPEANDIA, Jean-Luc GARDEN,
Dominique GIVORD and Olivier BOURGEOIS
4.1 Introduction 69
4.2 Advantage of this type of microdevice 69

4.2.1. The samples	. 70
4.2.2. Measurement method: the AC calorimetry	. 70
4.3. Nanocalorimeter for measuring nano objects	. 71
4.3.1. The parylene membrane	. 72
4.3.2. Thermometer and heater in NbN_x	. 73
4.3.3. Manufacturing	. 74
4.3.4. Sample placement	. 77
4.4. Device performances	. 77
4.4.1. Temperature calibration	. 77
4.4.2. Thermal conductance of the empty cell	. 78
4.4.3. Dynamic characterization of an empty	
calorimetric cell.	. 79
4.4.4. Heat capacity of an empty calorimetric cell	. 80
4.4.5. Heat capacity of a GdAl ₂ microcrystal	. 81
4.5. Conclusion	. 83
4.6. Acknowledgments.	. 83
4.7. Bibliography	. 83
Do Hieu TRINH, Benoît MARX, Philippe GOUPIL and José RAGOT	. 85
5.1. Introduction. $(1, 1, 2)$. 85
5.3. Design of a soft sensor for the oscillatory	. 80
failure detection	. 88
5.4. Fault detection by standard deviation test	. 90
5.4.1. Residual generation.	. 90
5.4.2. Generation of failure indicators	. 93
5.4.3. Failure detection by standard	
deviation test	
5.4.4 Discussion on failure detection by standard	. 94
J. H. Discussion on future detection by standard	. 94
deviation test	. 94 . 96
 deviation test 5.5. Fault detection by correlation test. 	. 94 . 96 . 97
 deviation test 5.5. Fault detection by correlation test 5.5.1. Pattern generation 	. 94 . 96 . 97 . 98
 deviation test 5.5. Fault detection by correlation test. 5.5.1. Pattern generation. 5.5.2. Failure indicator generation and fault detection 	. 94 . 96 . 97 . 98
 deviation test 5.5. Fault detection by correlation test. 5.5.1. Pattern generation. 5.5.2. Failure indicator generation and fault detection by correlation test 5.5.2. Discussion on the follows detection by 	. 94 . 96 . 97 . 98 . 100
 deviation test 5.5. Fault detection by correlation test. 5.5.1. Pattern generation. 5.5.2. Failure indicator generation and fault detection by correlation test 5.5.3. Discussion on the failure detection by correlation test 	. 94 . 96 . 97 . 98 . 100
 deviation test 5.5. Fault detection by correlation test. 5.5.1. Pattern generation. 5.5.2. Failure indicator generation and fault detection by correlation test 5.5.3. Discussion on the failure detection by correlation test 5.6. Conclusion 	. 94 . 96 . 97 . 98 . 100 . 103
deviation test	. 94 . 96 . 97 . 98 . 100 . 103 . 104
deviation test	. 94 . 96 . 97 . 98 . 100 . 103 . 104 . 104

CHAPTER 6. EMBEDDED SENSORS FOR THE ANALYSIS	107
Detriel DLADIGUATURE Schooling AUDDL Detries DRAND	107
Jean-Michel Auberlet and Thierry Bosch	
6.1 Introduction	107
6.2 Trajectories' observatory	109
6.2.1 Trajectory	110
6.2.1 The magurement	110
6.2.2. Proga fibers	110
6.2.1. Resistive sensors	112
6.2.5 Electromagnetic loops	112
6.2. The sensors' network	114
6.2.1 Spacing between the conserve	115
6.2.2. The sensor network's display	115
6.5.2. The sensor hetwork's display	110
6.5. Analysis processing	117
6.5. Analysis processing	11/
0.5.1. Analysis before instantation	110
6.5.2. Analysis of the development's altermath	120
	122
6. /. Acknowledgments.	122
6.8. Bibliography	123
CHATPER 7. LARGE DEFORMABLE ANTENNAS	125
7.1 Introduction	125
7.2 Mechanical analysis	128
7.3 Optical instrumentation for deformable antennas	128
7.3.1 Principle of the optical sensor based on fiber ribbons	132
7.3.2 Principle of ontical sensor based on polarization rotation	135
7.4 Experience on a planar structure	139
7.5. Conclusion	145
7.6 Acknowledgments	146
7.7 Bibliography	146
	140
LIST OF AUTHORS	149
INDEX	153