
Preface 

The mechanical testing of material is an important activity in research and 
industry. Scientists, engineers and technicians in a large range of domains (such as 
chemistry, metallurgy, mechanics, physics, polymer science, the rubber industry, 
aerospace and aeronautical industries, etc.) are interested in the technology used to 
investigate the mechanical properties of materials.  

Static and dynamic tests are complementary and used concurrently. Static tests 
are often used in industry. Dynamic tests, however, are becoming more popular  
and, surprisingly, in many cases are easier to use than static ones, at least at  
lower frequencies. Let us take an example concerning the measurement of elastic 
Young’s modulus or the shear modulus of a steel rod. In (nearly) static tests,  
glued strain gauges or special micro-displacement transducers are used to measure, 
the displacement of the sample in two or three directions at once, which enable  
us to evaluate the strains. With the measurement of applied force or torque,  
these two moduli are deduced from the basic definitions relating to stress and strain. 
There are a succession of measurements and calculations from the stress versus 
strain curves. 

To obtain such elastic moduli using dynamic tests, evaluation of resonance 
frequencies only is required; dimensions and geometry of the sample and its weight, 
as well as boundary conditions, being known.  

The main interest in dynamic testing, however, resides in characterization of the 
viscoelastic properties of materials, i.e. the dependency of technical moduli (or 
relaxation, creep functions) versus the frequency (or time). 
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Growing interest in dynamic tests 

In industrially advanced countries, societies for material testing regularly publish 
recommendations concerning mechanical tests with indications on methods and test 
procedures. Over the last five decades, the methods of investigating dynamic 
mechanical properties have made significant progress. In the scientific and technical 
literature devoted to this problem, various viewpoints have been adopted. For 
example, the dynamic tests that interpret materials at a molecular level, i.e. structural 
factors, molecular weight, cross-linking, crystallinity, etc., constitute tools in the 
chemistry and physics of polymers. The science of rheology is being more 
frequently adopted in order to obtain technical moduli (or time functions) which 
serve in viscoelastic constitutive equations relating stress components to strain 
components. 

Composite materials cover a large domain including laminated plastics and 
panels for the building industry. Special composite materials were initially designed 
and fabricated for advanced applications in the aeronautical and aerospace industries 
in the 1970s. The anisotropic properties of such materials are obtained by the 
appropriate arrangement of high-strength fibers in metallic or non-metallic matrices 
of the layers or by the orientation of the layers in the structural composite. The 
mechanical characterization of such anisotropic materials consequently requires 
special testing procedures which are more elaborate than the ones devoted to 
isotropic materials. 

Characterization of metallic and non-metallic material damping capacities is of 
interest to specialists in chemistry and physics as well as in mechanics. 

Measuring damping 

The measurement of damping coefficients of mechanical structures gives rise to a 
large variety of methods in structural dynamics that deserve the attention of 
specialists in material testing. The transposition of those methods into rheology, 
however, requires some caution and adaptations. The damping of a mechanical 
structure depends on damping of the materials used in the structure and the 
geometry of the structure itself. Consequently it is necessary to have this distinction 
in mind. Material damping can be deduced from structural damping on the condition 
that the relationship between these two kinds of damping is known. 

Damping capacities of materials cover a much larger range than structural 
damping. Globally, damping capacities of materials (defined as the quotient of the 
imaginary to real part of a complex modulus) can be divided into three classes:  
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a) low damping – tan δ< 10 -3; 

b) medium damping – 10 -3 < tanδ < 5.10-2; 

c) high damping – 5.10 -2 < tanδ < 10. 

Mechanical structural damping, in the majority of cases, concerns class (b) and 
no caution concerning measurement technique is needed. Class (a) concerns steel or 
special metals and requires special caution when taking measurements in order to 
eliminate the predominant influence of air damping on the sample. Class (c) 
concerns some rubbers or special blends of polymers and metal powders. The usual 
methods adopted in structural dynamics require special adaptations. 

Size and shape of the sample  

In many circumstances, analysts have to deal with samples with special or 
unusual shapes and sizes. The sample cut off from a hollow cylinder is curved and 
necessitates a special sample holder. The sample can be very small and therefore 
commercially available apparatus cannot be used. This is the case in biomechanics, 
for example, where the sample is a cut-off from a small bone. Analysts then have to 
come up with and devise a special set up. 

Appropriate knowledge on the elastodynamics of bounded media 

Let us begin with some remarks about currently available instruments. In some 
apparatuses, the mechanical part and adopted loading system are designed in such a 
way that vibrations imposed on the sample are far from simple. It eventually gives 
rise to different kinds of vibrations (extensional, bending, torsion) which are  
coupled in the sample itself. Coupling of such vibrations is often neglected in 
proposed formulae giving the moduli. The last formulae are deduced from the 
elementary theory of vibration using localized mechanical parameters that are not 
necessarily valid for short and thick samples. Mechanical effects (such as shear and 
inertia effects) are not taken into account. When experiments are conducted in 
higher frequency ranges, wave dispersion phenomenon (which describes the 
variation of the wave velocity in the sample versus the frequency) is rarely taken 
into account. 

Attachment of the sample by clamping, gluing or screw tightening creates zones 
where there is a three-dimensional state of stress that can be localized in the sample 
submitted to compression forces and also beyond the contact zone between the 
sample and holder system. This effect is particularly pronounced for a short sample. 



xxii     Mechanics of Viscoelastic Materials and Wave Dispersion 
  

These remarks, among others, show that confidence granted to an apparatus must 
not exclude critical thought and a mechanical background. 

The book 

I will now present and comment on the chapters in this book.  

The authors have intentionally situated dynamic testing of materials in the 
context of bounded medium elastodynamics. The measurements of dynamic 
responses of the sample in a large range of frequencies are interesting for analysts 
who want to obtain viscoelastic complex moduli. Rheologists1 are interested in the 
relationship between various resonance peaks of dynamic responses versus 
frequency and micromechanisms of the polymer being tested. Mechanical engineers 
wish to obtain the curves of complex moduli at low and high frequencies so as to 
include them in calculation of the dynamic responses of the mechanical structure. 

The motion equations of the sample must be carefully chosen, taking into 
account the frequency range. The upper frequency guides the choice of degree of 
approximation, which is related to the set of motion equations in view of wave 
dispersion characterization at the chosen upper frequency range. Wave dispersion is 
not the only effect we need to account for. There is another dispersion phenomenon: 
the viscoelastic dispersion, which is also frequency dependent.  

These two effects sometimes act in the same sense with respect to frequency, and 
vice versa regarding sample responses, depending on the type of stationary wave in 
the sample and the working frequency. This is the reason main wave dispersion 
should be taken into account and raises the delicate problem of reasoned choice of 
appropriate equations of motion, compatible with tractable numerical exploitation of 
experimental results. 

Recently, specialists in structural computing science have focused on the 
continuous element method which permits structure calculation even in the 
ultrasonic frequency range. This method presents advantages and constitutes a 
serious competitor for classical finite element method. The elastodynamics of 
bounded media precisely furnishes theoretical foundations, particularly in the 
domain of wave dispersion. Consequently, this last topic is treated in detail for 
various wave types adopted in samples.  

                              
1 Rheology designates the science which studies the flow (Greek radical Rheos) of solid or 
liquid materials. 
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One of the new methods of treating viscoelastic material characterization is to 
use continuous elements as a tool to numerically solve an inverse problem without 
recourse to closed-form eigenvalue solutions of boundary equations. 

We try to bridge the gap between theoretical academic works on wave dispersion 
and practical applications that do not yet sufficiently exploit the literature. Many 
significant theoretical contributions concerning wave dispersion in bounded media 
during the last three decades merit being brought together, classified and examined 
in view of applications. 

Part A is devoted to continuum mechanics (constitutive equations of materials 
including anisotropic materials). Chapter 1 covers linear and applied viscoelasticity. 
Chapter 2 looks at the principle of correspondence that permits the conversion of 
elastic equations of motion into viscoelastic ones, with the condition that boundary 
conditions and sample geometry remain the same. 

Chapter 3 is devoted to Williams-Landel-Ferry’s (WLF) method, which is  
very popular in the field of polymer chemistry and deserves the attention of 
mechanical engineers. It permits artificial enlargement of the modulus (or 
compliance) curve in an unusually large frequency range (often more than eight 
decades) on the condition that the superposition principle temperature-frequency is 
applicable. 

Serious limitations of WLF’s method must be taken into account when dealing 
with anisotropic artificial composite materials. The superposition principle may  
not be valid for such materials. The remaining possibility is to directly evaluate 
complex modulus (or compliance) over a large frequency range. This is the main 
reason to resort to appropriate wave dispersion theories for these materials. 

The closed-form expression of viscoelastic modulus (or compliance) is often 
necessary in computer codes to evaluate the damping responses of structures. 
Examining this problem from a practical point of view, we notice that analog 
models, usually proposed in textbooks and publications, with a reduced number of 
springs and dashpots cleverly arranged in series and/or in parallel, indeed help the 
reader “visualize” the material.  

For a given experimental dynamic curve, however, we do not know in advance 
how many associated mechanical elements (springs and dashpots) will be adopted, 
particularly when the frequency range is large. The appropriate model is often more 
complicated than the simple academic models indicated above. This unknown model 
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belongs to the “black box” constituted by the material in the usual mechanical 
inverse problem to be solved!2 

Some methods are then proposed to obtain a closed-form expression of modulus 
(or compliance) versus frequency by quotient of polynomials of the same degree 
(without a priori assumption of its degree) or by fractional derivatives whose 
interest resides in the condensed mathematical expression. 

In Chapter 4, various formulations of equations of motion are presented. As we 
have to deal with bounded medium and finite sample length, no exact equations are 
available: approximate equations of motion are to be found. The main question is: 
what is the degree of approximation we must adopt? This question raises a 
subsidiary question: how many generalized displacement components and 
generalized force components are to be adopted to fully cover the mechanical 
behavior of the sample?  

All the methods presented in dynamics textbooks can be utilized. D’Alembert’s 
principle and Lagrange’s equations constitute the first group of methods. The  
second group includes Hamilton’s variational principle using simple displacement 
field. Love’s variational principle can be considered as derived from Hamilton’s 
one.3 Mixed field Reissner’s principle is, in some cases, useful for correctly 
portraying the dispersion curve of the sample. This variational method is referred to 
in an accurate analysis of vibrations of an anisotropic rod.  

Part B concerns various types of rod vibration: extension, bending and torsion. 
Vibration modes are a source of vocabulary confusion for analysts. Let us clarify 
some different definitions. 

Vibration modes might concern the nature of the vibration as mentioned above. 
The nature of the vibration is related to the predominant strain in the sample, i.e. the 
extensional strain along the rod axis in longitudinal motion, shear strain in rod 
torsion, and axial strain in bending test. 

                              
2 Recently in electrical engineering, as well as in mechanical engineering, attention has 
focused on distributed models in a ladder using linear elementary models (springs and 
dashpots) or fractional derivatives which constitute an elegant method to characterize 
materials in a large frequency range with minimum parameters. 
3 Using variational principles and integrating by parts, we directly obtain equations of motion 
and natural boundary conditions as well. 
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In structural dynamics, vibration mode is related to eigenfrequencies and 
eigenvectors, which are portrayed by nodal lines on the sample surface whose 
density increases with frequency. 

Elastodynamic vocabulary: attention is focused not only on the representation of 
nodal lines on the lateral surface of the sample, but also on the sample thickness 
itself. Let us take an example: the bending test on a rod with a rectangular cross-
section. There is a neutral line in the thickness whose motion is representative of 
bending motion in the first elastodynamic mode. Higher elastodynamic modes 
correspond to discontinuous or undulating neutral lines in the cross-section. To 
create such modes, a special array of small piezoelectric exciters can be used. For 
the usual characterization of material, higher elastodynamic modes are rarely  
used, although they might constitute a good tool in fracture mechanics. To avoid 
confusion on the signification of vibration mode, additional indications between 
brackets will be used: (nature), (eigenfrequency or eigenvalue), (elastodynamics). 

In some chapters, theoretical works are presented  with proofs so as to facilitate 
the reader’s consultation. Intentionally, Part B is presented with details in the 
theoretical formulation so as to facilitate the reader’s work and reduce his/her 
burden in the search of scientific papers sometime published some centuries ago! 
Appendixes presented at the end of each chapter might help researchers to find the 
demonstration of formulae. For each kind of wave a collection of theories from 
elementary to sophisticated may present difficulties and a profusion of theories to a 
reader who approaches the problem for the first time. We have presented a set of 
theories as a toolbox: practitioners and researchers have to choose the appropriate 
tool for special applications themselves.  

Some readers might be surprised by the unusual length of the chapters in Part B 
compared to a classical book devoted to the same topics. The authors’ intention is to 
gather together all the possible groups of theories with various degrees of 
approximations, so the reader does not need to search elsewhere. The contributions 
of our research team are naturally presented with the intention of completing 
existing literature on the vibration of rods with finite and infinite lengths. 

Coupled vibrations highlight the effect of non-diagonal elastic coefficients in the 
equations of motion. Coupled vibrations are intentionally used with an off-axis 
anisotropic rod. Matricial diagonal coefficients being known, such coupled 
vibrations permit us to evaluate non-diagonal terms.  

Coupled vibrations exist even in an isotropic rod submitted to various vibration 
types, even for a closed section. In elementary theories these vibrations are 
neglected at lower frequencies. Shear effect in longitudinal and bending vibrations, 
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however, occurs in equations of motion with higher degrees of approximation. 
Torsional rod vibration gives rise to axial strain and extensional vibration occurs. 
Consequently, two or more elastic (or viscoelastic) moduli are present in equations 
of motion. 

The extensive utilization of rods in this book, instead of plates, necessitates 
explanation. In some technical and scientific publications, plate is indeed used to 
evaluate elastic (and/or viscoelastic) moduli. The objective of such works is to 
determine the whole set of elastic moduli. Elastic vibrations of plates necessitate 
measurements of vibration amplitude at many points and eventually for a certain 
number of (eigenfrequency) modes. On grounds of numerical calculation, 
optimization algorithms are referred to. The degree of complexity is considerably 
increased with respect to that concerning a rod. The challenge of adopting plate 
equations of motion is prohibitive compared to the one-dimensional equation for a 
rod with one, two or three displacement variables. The results obtained from plates 
in the scientific literature are unfortunately far from convincing, with the objective 
of solving an inverse problem to find moduli or stiffness coefficients of material4. 

Chapters 5, 6 and 7 present torsional, bending and extensional vibrations. In 
Chapter 5, a rod with rectangular cross-section is adopted, taking into account the 
ease of obtaining such a section. Warping of the cross-section is examined for 
isotropic and anisotropic materials. Saint Venant’s dynamic equations of motion are 
presented as are the higher approximation equations of motion corresponding to 
more complex section warping. 

Bending vibration in Chapter 6 concerns the elementary Bernoulli-Euler’s 
equation of motion. Timoshenko’s equation with a higher degree of approximation 
is preferred when working at a higher frequency. The bending vibration of an off-
axis rod is also presented in order to evaluate the compliance a non-diagonal 
coefficient of anisotropic materials. 

Extensional vibrations in a rod are presented in detail in Chapter 7. The 
longitudinal wave dispersion is surprisingly more difficult to apprehend than the one 
concerning the two aforementioned vibrations and requires a more elaborate 
displacement field. For application at higher frequency, the fourth-degree Bishop’s 
equation of motion is not capable of correctly portraying the wave dispersion curve 
at higher frequencies. Touratier’s formulation using internal constraints extends 
Volterra’s work to anisotropic rods. 

                              
4 In Chapter 10, however, progressive waves are used in plates to obtain material stiffness 
coefficients at ultrasonic frequency range 
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Chapter 8 is devoted to Le Rolland-Sorin’s double pendulum working at very 
low frequency. This inventive, artful and simple method is practically unknown in 
English-speaking countries and deserves practicians’ attention in the sense it  
requires so few measuring instruments compared to other test methods. The 
functioning principle is unusual compared to existing methods used in dynamic 
tests.  

Chapter 9 examines vibrations in rings and hollow cylinders. In many situations 
we have to deal with a curved rod or straight rod with curved cross-section. 

Chapter 10 is devoted to the propagation of ultrasonic waves in thick plates. 
Ultrasonic progressive dilatational (and/or shear) wave can be chosen in advance as 
can the wave direction. The second-order equation of motion is simple to handle 
and, surprisingly, the interpretation of experimental results is much easier to obtain 
than rod vibrations at lower frequencies. Plate samples with a large thickness 
compared to wavelength are used to equate the plate with a semi-infinite medium. 
Progressive waves are used for this purpose.  

Chapter 11 concerns evaluation of the viscoelastic complex modulus using 
characteristic (trigonometric and hyperbolic) functions to express displacement 
components. Transmissibility function (which relates output displacement to input 
displacement) is used in the framework of an inverse problem to evaluate complex 
moduli (or compliance). Methods using some special mathematical algorithms are 
presented in the framework of research of solutions to the important mathematical 
inverse problems. 

Finally, Chapter 12 complements the preceding chapter, using so-called 
continuous elements. This method is interesting because it offers us the chance to 
obtain a response curve in a very large frequency range by numerical computation 
which takes much less time than the finite element method. In our opinion, the 
matricial formulation of the problem and integration of elastodynamic equations of 
motion constitute one of the best ways of tackling the inverse viscoelastic problem.  
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