Chapter 6

Visual Servoing

6.1. Introduction

Robotic systems are more and more often equipped with exteroceptive sensors
which, by definition, provide information on the environment in which they operate.
These sensors are of course essential when a task has to be performed in an envi-
ronment that is not completely rigid or not perfectly well known. They also make it
possible to consider errors or inaccuracies that may occur in the robot’s geometric
(and therefore kinematic) models. Aside from force sensors, the purpose and applica-
tions of which were discussed in the previous chapter, there are many other sensors
available that provide localization of the system in its environment, or give it a gen-
erally local perception of its surroundings. To give a few examples, road marking,
passive beacon or radio-based systems, as well as GPS, all make it possible to local-
ize a mobile robot, by determining either its absolute position or its movement. When
it comes to perception, proximity sensors provide measurements on the distances to
the closest objects. They are therefore particularly well suited for obstacle avoidance
tasks. As for computer vision and telemetry sensors, they have a rather wide range of
applications since they can be used for localization, navigation, and exploration.

For a long time 3-D reconstruction was considered an unavoidable, independent
module, a prerequisite to any motion planning module for a robot in a not perfectly
well known environment. In computer vision, this state of things, which used to be
justified by the prohibitive computation time required by image processing algorithms,
led to a number of successful studies, notably in the field of 3-D vision [FAU 93,
MA 03]. The algorithmic and technological progress achieved over the past 15 years
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has made it possible to more closely link the aspects of perception with those of action,
by directly integrating the measurements provided by a vision sensor into closed-loop
control laws. This approach, known as visual servoing, shares some aspects with the
studies on sensor-based control and is the focus of this chapter.

Visual servoing techniques consist of using image measurements provided by one
or several cameras, in order to control the motions of a robotic system. This allows
for the achievement of a wide variety of tasks designed to position a system with
respect to its environment, or to track mobile objects, by controlling from one to all of
the system’s n degrees of freedom of the robot. Whatever the sensor’s configuration,
which can range from a camera mounted on the robot’s end-effector to several cameras
located in the environment and observing the robot’s end-effector, the objective is to
select as best as possible a set of k visual features, in order to control the m desired
degrees of freedom, and to develop a control law so as to make these features s(t)
reach a desired value s* that defines when a task is suitably achieved. It is also possible
to follow a desired trajectory s*(¢). The idea of control therefore amounts to regulating
the error vector s(t) — s*(¢) (i.e. making s(¢) — s*(¢) reach zero and maintaining it
there).

Figure 6.1. 2-D and 3-D visual servoing: in 2-D visual servoing the camera is moved from R,
to R+, based on features s extracted directly from the image (left). With 3-D visual servoing, s
is comprised of 3-D features estimated after a localization process (right)

With a vision sensor, which provides 2-D measurements, the nature of the poten-
tial visual features is extremely rich, since it is possible to design visual servoing
using both 2-D features, such as the coordinates of characteristic points in the image
for example, and 3-D features, provided by a localization module operating on the
extracted 2-D measurements (see Figure 6.1). This wide range of possibilities is the
reason behind the major difficulty in visual servoing, that is to build and select as best
as possible the visual features needed for a suitable behavior of the system, based
on all the available measurements. A number of qualities are important: local or even
global stability, robust behavior when facing measurement or modeling errors, absence
of singularities and local minima, suitable trajectories for the robot, but also for the
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measurements in the image, and finally a maximum decoupling between the visual
features and the controlled degrees of freedom.

To study the behavior of the resulting system, a modeling phase is necessary to
describe the relation between the visual features s(¢) that were chosen and the control
variables. This essential phase of model design will now be described. However, in this
chapter we will not be dealing with aspects of image processing, crucial to extracting
useful 2-D measurements from a digital image and tracking them at each iteration of
the control law. For readers interested in knowing more, we suggest turning to works
specializing in this field [VIN 00, KRA 05].

6.2. Modeling visual features
6.2.1. The interaction matrix

In order to be taken into account in a visual servoing scheme, a set s of & visual
features needs to be defined by an application differentiable from the special Euclidean
group S FEs into R¥:

s =s(p(t)) [6.1]

where p(t), an element of the space of reference frames and rigid bodies SEs,
describes the pose at the instant ¢ between the camera and its environment. Hence
only the movements of the camera, or of the objects it perceives, can modify the
value of a visual feature.

The differential of s allows us to know how the variations in the visual features
are related to the relative movements between the camera and the scene, since by
differentiating [6.1], we get:

§=—p=Lsgv [6.2]

where:
— Lg is a k x 6 matrix, referred to as the interaction matrix related to s;

— v is the relative instantaneous velocity (also called kinematic screw vector)
between the camera and the scene, expressed in the camera’s frame R, in its origin C.
More accurately, if v, and v, are, respectively, the kinematic screws of the camera
and of the scene it perceives, both expressed in R, and in C, then let:

V=V — Vo [6.3]
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From now on, except if noted otherwise, we will write that a screw expressed in a
frame of reference has its value given in the origin of this frame. Also, we will denote
by v the translational velocity at the origin of the coordinate system, and by w the
angular velocity, such that v = (v, w). If °R.. describes the rotation matrix from the
frame R, bound to the object to R., we have by definition [SAM 91]:

[w]x = “RR, = —R,°R) = “Ro°Re [6.4]
where [w] is the skew symmetric matrix defined from w.

COMMENT.— In more formal terms [SAM 91], the transpose of the interaction matrix
can be defined as the matrix representation of the subspace generated by a family of
k screws expressed in R.. This is due to the fact that each component of s can be
decomposed as the product of two screws, one called the interaction screw, and the
other being of course the kinematic screw. We will see the practical advantage of this
definition in section 6.3.3.1.

6.2.2. Eye-in-hand configuration

If we consider a camera mounted on the end-effector of a robot arm observing a
static object, the relation between s and the speed of the robot’s joint variables ¢ can
easily be obtained:

s =Jsq=Ls"V,"Jn(q) q [6.5]

where Jg = LV ,,"J,, is the Jacobian of the visual features and where:

—"J,(q) is the robot’s Jacobian expressed in the end-effector’s frame R,
[KHAL 02];

- “V,, is the kinematic screw’s transformation matrix from the camera’s frame R,
to frame R,,. This matrix, which remains constant if the camera is rigidly attached to
the robot’s end-effector, is given by [KHAL 02]:

c]-:{n [ctn]XcRn

Vi = 05 ‘R,

[6.6]

where ‘R, and “t,, are, respectively, the rotation matrix and the translation vector
from frame R, to frame RR,,. The elements of the transformation matrix from the cam-
era’s frame to the end-effector’s frame can be estimated quite accurately by using
hand-eye calibration methods [TSA 89, HOR 95]. Note that visual servoing tech-
niques are usually rather robust in admitting important modeling errors, both in this
transformation matrix [ESP 93, MAL 02] and in the robot’s Jacobian.
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More generally, if the camera is observing a moving object, the differential of s is
given by:

§ =LV, T, (q) ¢+ % [6.7]

where the term % represents the variation of s due to the object’s own motion (which
is usually not known). In the highly unlikely event that the object’s motion is known,
and given for example by the kinematic screw vector v, in R, we get:

§ = Ls°V,,"J,(q) ¢ — Leve [6.8]

6.2.3. Hand-to-eye configuration

Likewise, if we now consider a camera in the scene observing the end-effector of
a robot arm, the variation of the visual features rigidly attached to this end-effector is
expressed according to the speed of the joint coordinates:

)
§= LV, "J,(q) q + a_j [6.9]

where % now describes the variations of s due to a possible movement of the camera.
COMMENT.— Notice the difference in signs between Equations [6.5] and [6.9]. This
difference is of course due to the configuration change of the sensor with respect to
the control variables (see Figure 6.2).

Whether the camera is fixed or mobile, the matrix “V,, is now variable and has to
be estimated at each iteration, which is usually done using a 3-D localization technique
(see section 6.2.5.1). If the camera is static, it is therefore more convenient to use one
of the following relations:

s = —L¢Vy'V,"J.(q) q [6.10]

0
— —LSCV@[ Is [tn]x }‘Z’Jn(q) q [6.11]
0; I
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where ?J,,(q) is the robot’s Jacobian expressed in its basic frame of reference and
where the values of ?V,, and ?t,, are provided by the robot’s direct geometric model.
This is interesting because the transformation matrix “Vy is then constant and only
has to be estimated once beforehand, usually coarsely.

Lo
(] ]

Figure 6.2. Eye-in-hand configuration (left); eye-to-hand configuration (right)

In the literature [HAS 93a, HUT 96], most studies focus on eye-in-hand configu-
ration. We can however cite [ALL 93, NEL 94a, HAG 95, KEL 96, CIP 97, HOR 98,
RUF 99] in which one or several cameras are used in eye-to-hand configurations.

In any case, the interaction matrix plays an essential role and we will now give its
analytical form for a set of visual features. From now on, all the necessary quantities
(coordinates and speeds of points, kinematic screw, etc.) are expressed in the camera’s
frame shown in Figure 6.3.

6.2.4. Interaction matrix

6.2.4.1. Interaction matrix of a 2-D point

The typical mathematical model for a camera is defined by a perspective projec-
tion, such that any point M with coordinates X = (X,Y, Z) is projected onto the
image plane in a point m with coordinates x = (x, y) with:

v=X/7 , y=Y/Z [6.12]
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Figure 6.3. Camera model

By differentiating this equation, we get the variations in the image of the coordi-
nates = and y of m with respect to the speed X of the coordinates of point M:

. [1/z 0o -Xx/z?

=l o 1z vz | [6.13]

Whatever configuration is chosen (eye-in-hand or eye-to-hand, static or mobile
point M), the speed X of M according to the kinematic screw v between the camera
and its environment is given by the fundamental kinematics equation:

X:—v—wXX:—'v—i—[X]Xw:[—Hg [X]X]v [6.14]
Equation [6.13] can then be simplified using Equation [6.12], written in the form:
x=Lx(x,2) v [6.15]

where:

Li(x,2) =

-1/Z 0 z/Z xy —(1+2%) vy (6.16]
—x

0 -1/7Z y/Z 14y —xy

Notice that the terms induced by angular motions only depend on the measure-
ments of z and y in the image. On the other hand, terms induced by translational
motions are inversely proportional to the depth of the 3-D point. This effect occurs
for all the visual features that can be defined in the image (and describes the classic
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ambiguity in computer vision between the amplitude of a translational motion and the
depth of objects). In visual servoing, it is therefore necessary to insert a 3-D knowl-
edge, even though it is unknown beforehand, whenever trying to control a robot’s
degrees of freedom that imply translational motions.

Image processing algorithms provide measurements expressed in pixels. If we
ignore strongly non-linear distortion effects, due for example to the use of short focal
length lenses, the variable change when switching from the coordinates x, = (zp, y;)
of a point, expressed in pixels, to the coordinates x of this same point, but expressed
in meters, is given by:

r=(xp—x)/fx » v=(Yp—ye)/fy [6.17]

where (z.,y.) represents the principal point’s coordinates in the image and where
fz = f/ly and f, = f/l, are the ratios between the focal length f of the lens and the
dimensions [, and [, of a pixel. These parameters, referred to as the intrinsic param-
eters of the camera, can be estimated beforehand, during a calibration step [TSA 87,
BEY 92, ZHA 00], but as with the elements of the hand-eye matrix, coarse approxima-
tions are usually sufficient to maintain the stability of visual servoing systems [ESP 93,
MAL 99, MAL 02, DEN 02].

It is possible to calculate the interaction matrix related to the coordinates of a point
directly expressed in pixels. Using the variable change reciprocal to [6.17], given by:

xp:xc+fw$ y yp:yc+fyy [618]

we immediately get:

fe 0
Lx = Lx 6.19
=15 5] .

where the set of terms contained in Ly, except of course for the depth Z, can be
expressed as functions of the intrinsic parameters and coordinates x,, using [6.17]. If
required, the same can be done for the visual features defined later on, working with
features expressed in pixels. The main advantage of having an analytical form of the
interaction matrix that explicitly depends on the intrinsic parameters, is that it then
becomes possible to study how sensitive visual servoing systems are to errors made in
the estimation or approximation of these parameters.
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Finally, we mention the studies in projective geometry described in [RUF 99]
which led to a direct modeling of the Jacobian matrix Jg such that § = Jgq, in the
case where s is comprised of the coordinates of a point located on the end-effector
and observed by two external cameras: s = (x4, yq, Ta, Ya). The advantage of such
an approach is that it is no longer necessary to know the Jacobian, and hence the
geometric model, of the robot being used.

If we now consider a camera equipped with a controllable zoom, thus providing
the system with an additional degree of freedom, we get just as simply, from [6.18]:

{ Z;’ ] =Ly, v+ { (zp —xc)/f ] f [6.20]

For purely technological reasons (because for most zooms, position can be con-
trolled, not speed), few studies have used this function, even though it provides an
interesting redundancy with respect to the translational motion along the optical axis.
We can still mention [HOS 95a, BEN 03].

6.2.4.2. Interaction matrix of a 2-D geometric primitive

It is also possible to calculate the interaction matrix related to visual features con-
structed from geometric primitives [ESP 92]. This is done simply by defining the equa-
tions that represent:

— the primitive’s nature and configuration in the scene:
h(X,Y,Z,P,...,P,) =0 [6.21]
— its projection onto the image plane:

g(x?y7p17"‘7pm) =0 [622]

— the relation between the 3-D primitive and its image (referred to as the limbo
surface in the case of a volumetric primitive, see Figure 6.4):

As an example, if a straight line in space is represented by the intersection of the
two following planes:

h =44 X+BY+CiZ+D1=0

hy = A2 X + BoY +C2Z =0 [6.24]

h(X,Y,Z,Al,...,C’g):{
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we immediately obtain, using the equations of perspective projection [6.12]:
— the function p from hq:
1/Z7 = Ax+ By+C [6.25]

with A = —Al/Dl, B = —Bl/Dl and C' = —Cl/Dl;
— the equation of the 2-D line, denoted by D, resulting from the projection onto
the image of the 3-D line, from ho:

ar+by+c=0witha = Ay, b= By, ¢ =y [6.26]

Surfaces of limbs
1/Z:M(x7y>P17"‘>Pl)

MX,Y,Z,P,...,P,) =0

C
g(x7yap17"'7pm) =0

Figure 6.4. Projection of the primitive onto the image
and limb surface in the case of the cylinder

Because the choice of parameters (a, b, ¢) is not minimal, it is preferable to choose
the (p, 0) representation defined by:

g(z,y,p,0) =xcosd + ysinf —p =0 [6.27]
where 6 = arctan (b/a) and p = —c/v/a? + b? (see Figure 6.5).
If we differentiate Equation [6.27], which corresponds to the hypothesis that the

image of a straight line remains a straight line whatever the camera’s motion, we get:

p+ (xsin® —ycosh) = icosf +ysind , Y(z,y) €D [6.28]
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Figure 6.5. (p, 0) representation of the 2-D lines

Based on Equation [6.27], x is written according to y if cos # # 0 (or y according
to z if that is not the case) and Equation [6.28] can then be written, using [6.15]
and [6.25]:

(p+ptanf ) +y (—0/cos®) =Ky v+yKav , VyeR [6.29]
with:

Ki=[Acosf Aisin@ —Xip sinf —cosf—p?/cosf —ptand |
Ko =[)Xycosf Masinf —Xop p ptand 1/cosf |

where \y = —Ap/cos@ — C and \y = Atand — B.

Immediately, we infer that:

p = (Ki+psindKsy)v
{9 = —cosfKyv [6.30]
hence:
L,=[)X,cos0 X,sinf —X,p (1+p?)sind —(1+p*)cosf 0 | (631]

Lo =[AgcosO Ngsinf —Xgp —pcosf —psinf —1]

with A\, = —Apcosf — Bpsinf — C and Ay = —Asinf + B cos 0.
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The same result can be obtained by applying Equation [6.28] to two points
of D, for example those with coordinates (pcosf, psinf) and (pcosf + sinf,
psind — cosb).

Results for more complex primitives (circles, spheres, and cylinders) are given
in [CHA 93a], making it possible to use 2-D visual features associated with these
primitives in visual servoing. It is also possible to infer the interaction matrix related to
features defined from several primitives (such as the orientation between two segments
or the distance from a point to a line, for example). The drawback, however, is that it is
only possible to work on environments where such geometric primitives exist (hence
the more frequent use of characteristic points).

6.2.4.3. Interaction matrix for complex 2-D shapes

Recent studies have made it possible to establish the analytical form of the inter-
action matrix related to visual features representing the projection onto the image of
objects with more complex shapes. In [COLO 99, DRU 99], the six terms that corre-
spond to the affine part of the transformation between the image of a planar object in
its current position and the image of the same object in the desired position are con-
sidered. More precisely, if (z,y) and (z*, y*) are the coordinates of a given point on
the object in the current image and the desired image, respectively, then we assume
that there exists a set of parameters @ = (a1, b1, ¢1, az, ba, ¢2) such that the relation:

{x = @ thy o [6.32]

y = asx" +boy*+co

is valid for all points of the object. This hypothesis is unfortunately not verified for
a camera described by a perspective projection model. Additionally, the interaction
matrix related to @ shows a loss in rank (from 6 to 4) when the object’s plane is
parallel to the image plane.

Furthermore, if we calculate the Fourier series expansion for the polar signa-
ture p(@) of the contour points of an object in the image (defined such that the coordi-
nates x and y of a contour point are written: x = x4+ p(6) cosf , y = y,+ p(0) siné
where x4 and y, are the coordinates of the object’s center of gravity), it is possible
to calculate the interaction matrix related to the terms of that series [COL 00]. The
resulting analytical form, however, is very complex and difficult to understand from a
geometrical point of view.

Another possibility is to calculate the interaction matrix related to the moments
m;; of an object [CHA 04]. Moments are defined by:

mi; = / / z'y’ dx dy (6.33]
D
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where D is the area occupied by the object in the image and where ¢ + j is the order
of the moment. If we assume that the object considered is planar or has a planar limb
surface with equation 1/Z = Az + By + C, we obtain, for the area a (= mqo) and the
coordinates x4 (= mi9/meo) and y, (= mo1/moo) of the object’s center of gravity:

Lo=[ —-dA —aB  a(3/Zg — C) 3ayg —3azg 0 [
Lo, =[-1/Z, 0 wg/Zg+e  mgyg+4anun  —(1+z2 +4n20) ye] [634]
Ly,=[ 0 —1/Zg  yg/Zg+e 1+y2+4ne —Tgyg —4n11  —xzg |

with 1/Z, = Axy + By, + C, e1 = 4(Ango + Bna1), €2 = 4(Ani1 + Bngz) and
where 120, ng2 and nq; are the second order normalized centered moments defined by:

2
g

H20 = Moo — ax
Nij = fij/a with Ho2 = Mo2 — ay§ [6.35]

Hi1 = Mi11 — ATgYg

Note that the area speed a is equal to zero for any motion other than the expected
translational motion along the camera’s optical axis if the object is centered and par-
allel to the image plane (A = B = x4, = y, = 0). This makes area particularly
interesting for controlling this degree of freedom, because of its relative decoupling
compared to the other degrees of freedom.

Notice also that the results obtained for the coordinates of the object’s center of
gravity encompass those given in [6.15] for a purely punctual object, since for a point,
we have noy = n1; = ngz2 = 0 and we can set A = B = 0 in [6.34] to again obtain
exactly [6.15].

More generally, the interaction matrix related to a moment 1m;; is given by:
Lmi,j = [mvm Myy Myz Mz Mwy Mz ] [6.36]
where:

My = —’L(Am” + Bmifl’j+1 + Cmifl,j) - Amij

Myy = —j(Amile’j,l + Bmij + Cmi’jfl) - Bmij

Myz = (i +J + 3)(Amit1; + Bmy j+1 + Cmyj) — Cmyj
Mz = (1 + 7+ 3)mij41 + Jmij—1

mwy = —(Z +] =+ 3)m1‘+1,j — Z'mifl’j

Mz = 1M1 541 — JMit1,j—1
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For centered moments defined by:

Wij = // (x — xq)’(y — yq)7 dz dy [6.37]
D

we get:

Wij — [ Hoxr Moy Hvz Hwz Hwy Hwz ] [638]

with:

pow = —(i+ 1) Api; —iBpi—1,j4+1

Poy = —JApit1,-1 — (§ + 1) Buij

Moz = —Apwy + Bws + (i+37+ 2)0/%‘.7'

Pwz = (047 4 3)pijr1 + iTgpi—1 j+1
+(Z + 2] + 3)yg,u” — 42.77,11/11',1,3' — 4jn02,ul-,j,1

Py ==+ J+3)pit1,; — (20 + J + 3)z g
—JYglhi+1,j—1 + 4inoofti—1,j + 4in11 i1

Mz = G141 — JHit1,j—1

The numerical value of the interaction matrix related to a moment of order ¢ 4 j
can thus be calculated from the measurement of moments with orders at most ¢+ j+1,
which is convenient in practice. The values A, B, C characterizing the plane’s config-
uration must also be available (or at least an approximation of these values) in order
to calculate the translational terms. As we have already said, this property is true for
any visual feature defined in the image.

Based on the moments, it is possible to determine relevant geometric information,
such as, as we have seen before, the area and the center of gravity of an object. Fur-
thermore, the main orientation is obtained from the second order centered moments:

o= larctan (ﬂ> [6.39]
2 120 — 402

and we easily get, using [6.38]:

La:[aw Quy Oz Olyg Oty —1] [6.40]
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where:
Qe = aA+0bB
Qpy = —cA—aB
Qyz = _Aawy + Bowws
Quy = —brg+ayy,+d
Quy = aTg—CYyg+e
and:

= g1 (p20 + po2)/A

20471 + poz2 (o2 — p20)]/A

20431 + p2o(pi20 — po2)] /A

5[pa2(p20 — pro2) + p11(po3 — p21)]/A
5[pa1(po2 — p20) + a1 (30 — pi2)]/A
= (p20 — po2)? + 4pd

>0 &0 o8
Il

We should point out that translational motions leave « invariant when the object’s
plane is parallel to the image plane (vy; = apy = @y = 0if A = B = 0). Note also
the direct relation between the variation of « and the angular motion around the optical
axis w,, an indication, as we could have expected, that « is a good visual feature for
controlling this degree of freedom.

One of the different possible strategies in visual servoing consists of directly using
all of the measurements available in the image. We then have redundant visual fea-
tures (that is, more than the number of degrees of freedom that we wish to con-
trol), and as we will see in section 6.3.2.2, servoing stability can only be demon-
strated in the neighborhood of the convergence position. Another, more promising
strategy consists of determining complementary visual features, by building or selec-
tion [COR 01, IWA 05, TAH 05], or even by finding a different way of expressing the
perspective projection model (for example a spherical projection [HAM 02]). The case
of an object’s area and orientation discussed earlier are simple and natural examples
of such a determination. However, much remains to be done in this field.

6.2.4.4. Interaction matrix by learning or estimation

The use of the polar signature or of the moments allows us to consider objects
with truly complex shapes, but requires a spatial segmentation phase in the image pro-
cessing part that can turn out to be extremely difficult in textured environments. To
avoid this segmentation phase and be able to process any kind of image, it is possible
to conduct a principal component analysis of the desired image and select the princi-
pal eigenvectors [NAY 96, DEG 97]. The coefficients of this decomposition form the
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set s of the visual features. The analytical form of the associated interaction matrix is
then unknown (since it is too difficult to obtain) and the servoing is based on a purely
numerical estimate provided by a learning technique. This technique consists of gen-
erating movements for the different degrees of freedom available and to measure the
corresponding variation observed in the image.

Techniques to estimate the interaction matrix have also been used for geometric
visual features such as those described in the previous sections. They are all based
on the same idea and are performed either offline, by learning [WEI 84, RUF 99,
LAP 04], possibly by using a neural network [SUH 93, WEL 96], or online during
the servoing [KIN 94, HOS 94, CHA 96, JAG 97, PIE 04]. These studies fall into two
categories, those based on purely numerical estimates of the terms of the interaction
matrix [WEI 84, SUH 93, WEL 96, HOS 94, JAG 97, PIE 04] or of its pseudoinverse
directly [LAP 04], and those that estimate the unknown parameters occurring in this
matrix, such as for example the structure of objects or the camera’s intrinsic param-
eters [KIN 94, CHA 96, RUF 99]. The first case is very attractive in practice since it
allows us to avoid any modeling phase. The resulting drawback is that it is impossible
to demonstrate the system’s stability in the presence of inevitable estimation errors.
The second option is therefore more satisfactory theoretically speaking, but since it
requires an analytical determination of the interaction matrix beforehand, it cannot
be applied today to servoing schemes based on visual features as complex as those
resulting from a principal component analysis of the image.

6.2.5. Interaction matrix related to 3-D visual features

As has been mentioned before, it is also possible to choose visual features no
longer expressed directly in the image, but resulting from a reconstruction phase or a
3-D localization phase [WIL 96, MART 97]. These 3-D features are obtained either
by a simple triangulation if a calibrated stereoscopic vision system is available, or, in
the case of a monocular sensor, by dynamic vision or with a pose estimation method.
Dynamic vision techniques rely on the measurement of the camera’s motions and of
the resulting motion in the image. They are usually rather sensitive to measurement
errors [SMI 94, CHA 96]. We will now briefly describe pose estimation techniques,
because they are the most commonly used in 3-D visual servoing.

6.2.5.1. Pose estimation

There are many methods for estimating a camera’s pose with respect to an object
using an image of this object. They rely on prior knowledge of the 3-D model of
the object and of the camera’s calibration parameters. More precisely, for an image
acquired at instant ¢, they provide an estimate p(¢) of the real pose p(t) between the
camera’s frame and the object’s frame based on the measurements x () extracted from
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the image, the camera’s intrinsic parameters and the object’s 3-D model, represented
for example by the set X of the 3-D coordinates of the points that constitute it:

p(t) = p(x(t), Te, Yo fa, fyy X) [6.41]

Most of the time, the measurements x(¢) are image points [HOR 89, HAR 89,
DEM 95], segments [LOW 87, DHO 89], even conics [SAF 92, MA 93], or also cylin-
drical objects [DHO 90]. But very few methods combine different kinds of primitives
(see however [PHO 95] for the combined use of points and lines).

The methods described in the literature are either purely geometric [HOR 89,
DHO 89], based on a numerical and iterative linear estimation [DEM 95] or based
on non-linear estimation [LOW 87]. Except for very peculiar cases [HOR 89], no ana-
lytical solution to this inverse problem is available.

We should point out that in the case of an error in the calibration parameters or in
the object’s model, the estimate p(¢) will be biased and, because of the absence of an
analytical solution, it is unfortunately impossible to determine the value of this bias.
The same goes for finding the interaction matrix associated with any features built
from p(t). This is because, based on [6.41]:

L b, b
p(t) = 7%= Lxv [6.42]
hence:
op
Ly = — Ly 4
Poox [6.43]

The second term of this matrix product is nothing but the interaction matrix related
to x, and is therefore known if x is comprised of geometric primitives such as points
or line segments. On the other hand, the first term, g—f:, which represents the variation
of the estimate of p according to a variation of the measurements x in the image, is
unknown. We can only note that it is directly related to the estimation method and
depends once again on the camera’s intrinsic parameters and the object’s 3-D model.
This is why we will assume from now on that the estimate of p(t) is perfect, which
is the case under the (strong) hypotheses that the camera is perfectly calibrated, that
the 3-D model of the object is perfectly well known, that the measurements x(¢) are
not tainted with any errors, and that the estimation method is free of any numerical
instability.
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The strongest hypothesis involves the estimation’s stability in regards to measure-
ment errors, because if we consider for example four coplanar points, theoretically
there exists only one solution to the localization problem [HOR 89]; however, a very
small variation of the positions of the four points in the image can cause a very large
variation in the estimate of p (hence the matrix (g—;‘:) is very poorly conditioned). Such
an effect is illustrated by Figure 6.6. In practice, this effect decreases when considering
a large number of points, or non-coplanar points, but there are currently no theoretical
results available on the sensitivity of the estimation methods and the measurements to
choose, regarding what kind to use, but also how they are arranged in the image and
the 3-D space.

Figure 6.6. Example of two distinct poses of the camera with respect
to the object (top) that provide similar images of this object (bottom)

Based on p(t), and under the hypotheses mentioned previously, that is, assuming
a perfect estimate for p(t) (p(t) = p(t)), we have at our disposal the rotation R,
between the camera’s frame in its current position 12, and the object’s frame R,
attached to the object, as well as the translation “t,, between theses two frames. We can
then infer the position in R, of any object’s point. If, additionally, in the context of an
eye-in-hand system, the pose between the camera’s frame at its desired position R«
and the object’s frame is known, then we can also infer the displacement necessary
to go from R, to R.-. With an eye-to-hand system, the same is true of course for an
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object attached to the robot’s end-effector between its current position and its desired
position.

We will now give the interaction matrix related to the minimal representation fu
of an arbitrary rotation with angle # about an axis u, then the one associated with the
coordinates of a 3-D point.

6.2.5.2. Interaction matrix related to 6u

Remember, first of all, that the fu representation is obtained in a unique manner
from the coefficients 7;; (j—1...3 j—1...3) of a rotation matrix R using the following
equation [KHAL 02]:

1 T32 — T'23
011 = B Sinca T13 — T'31 [644]
T21 — T12

where 6 = arccos((r11 + 722 + r33 — 1)/2) and where the sine cardinal sincf, defined
by sin 6 = 6 sinch, is a function C*° equal to zero in (2n + 1)7, Vn € Z. For § = 7,
the only case not taken into account by [6.44], u is the eigenvector of R associated
with the eigenvalue 1.

In the case of an eye-in-hand system, it is possible to use the vector fu to represent
the rotation ¢ R, between R - and R.. If the matrices c” R, and ‘R, are identical,
which is usually the case, we can also consider the vector fu associated with the
rotation ”*Rn. Likewise, with an eye-to-hand system, the vector fu can be used to
represent either the rotation °"R, between the desired frame and the current frame
of the object mounted on the effector, or the rotation ”*Rn if the matrices "*Rn*
and °R,, are identical (which is also usually the case).

In all of the cases mentioned above, the interaction matrix related to fu is given
by [MAL 99]:

Lou=[ 03 Ly, | [6.45]

with:

sinc” 3

L, =12 [ulx + (1 - —Smcf(,> [uf? [6.46]
2
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The Au representation is therefore particularly interesting since L, is singular only
for & = 27. Furthermore, we have:

2
w

9 9
L' =13 + 5 sinc’s [u]x + (1 — sinch)[u]? [6.47]

which guarantees the following, rather convenient property:
L;! fu=6u [6.48]

If it would be preferable to consider the rotations “R..«, "R« or °R,~, we imme-
diately infer from [6.45] that:

Lou=1[0s —-L, | [6.49]
and we now have:
L, fu= —6u [6.50]

Note that it is not wise to directly take into account the vector fu associated with
the rotation “R,, and to use the difference between fu and #*u* (where 8*u* rep-
resents the desired rotation c*Ro). This is because fu — 0*u* does not represent a
distance in the space SO3 of rotations [SAM 91].

6.2.5.3. Interaction matrix related to a 3-D point

Using the fundamental kinematics equation given in [6.14], we immediately get
for any point of the object with coordinates X connected to the object:

Lx =[ -I3 [X]x ] [6.51]

The points taken into account can be characteristic points of the object [MART 96,
SCH 04], or also the origin of R, (we then have X = “t,).
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Thus, with an eye-in-hand system, if we are interested in the displacement it
must achieve, we can also consider the origin of R.« (we then have X = “t.- and
X* = 0) [MART 97]. In that case, it is even better to consider the position of the
origin of the camera’s frame expressed in a rigidly fixed frame, such as R,, or even
R« or Ry if the object is static (see Figure 6.7) [WIL 96].

Figure 6.7. Possible 3-D points with an eye-in-hand system

For example, if we choose R,,, we have:
°t, = —°R/ °t, = —°R.‘t, [6.52]
By differentiating this equation, we get:

Otc - _ORccto - ORCC{:O
= —R. (“R,°R.‘t, + °t,)

meaning that, using [6.4] and [6.51]:

°t. = —Re ([W]xo — v+ [“to]xw)
= ‘R.v

We therefore have:

Log, = [ “Re 03 ] [6.53]
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which is independent of the camera’s rotational movements. Likewise, if we choose
C*tc, we get:

Lo = “Re 03] [6.54]

and we will then have c*tc* =0.

With an eye-to-hand system (see Figure 6.8), and for the same decoupling prop-
erties, it is better to consider the position of the origin of either the frame R, or R,,
and to express the kinematic screw in this origin. This is because if we choose for
example “t,, then, using [6.51] and [6.6], we have:

c]-:{o [cto] X c]-:{o

LCtOCVO = [ —]13 [Cto]x :I 03 CR

[6.55]

hence:
Let °V, = [ —‘R, 03 ] [6.56]

We can of course express the position of the origin of R, in any frame. If the
robot’s reference frame Ry is chosen, we simply obtain:

"%t =[1; 03] v, [6.57]

where v, is the object’s kinematic screw expressed in Ry and in the origin of R,.
The same result is of course achieved when considering wtn and wvn.

6.2.5.4. Interaction matrix related to a 3-D plane

Finally, we can also determine the interaction matrix related to 3-D geometric
primitives such as line-segments, planes, spheres, etc. For example, in the case of a
plane represented by its unit normal u and its distance to the origin D, we get:

L(u,p) = [ o [‘ﬂx } [6.58]



Visual Servoing 301

Figure 6.8. Possible 3-D points with an eye-to-hand system

6.3. Task function and control scheme

Achieving a robotic task by visual servoing requires the selection of the appro-
priate visual features and the design of a closed-loop control law. The first phase
amounts to defining a task function with properties that ensure that the chosen task
will be achieved [SAM 91], the second to regulating this task function. We will first
consider the case where we wish to control the 6 degrees of freedom of the robot, in
other words to bring the end-effector’s frame to a unique desired pose.

If we use a set of k visual features s, the general form of the task function e is:

e(p(t)) = C (s(p(t)) —s7) [6.59]

where:
- s(p(t)) is the current value of the selected visual features;
— s* is the value that s must reach for the task to be achieved;

— C is a full-rank 6 x k matrix, referred to as the combination matrix, such that
the 6 components of e are independent and control the robot’s 6 degrees of freedom.

6.3.1. Obtaining the desired value s*
Whatever the nature of the visual features that were chosen, the value s* is usually

obtained, either by defining beforehand the pose that must be achieved between the
robot and the object in question, or by learning:
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— In the first case, if s includes 2-D features, their desired value can easily be
obtained if a 3-D model of the object is available, simply by applying the perspective
projection equations to calculate the object’s position in the image. Additionally, it
is also possible to specify the pose that has to be achieved between the end-effector
and the object of interest (for a grasping task for example): the calculation of the
visual features (2-D or 3-D) is then immediately obtained if the transformation matrix
between the end-effector frame and the camera frame is known. However, in any case,
any modeling error in the camera’s calibration parameters, in the model of the object
(and possibly in the end-effector-camera transform matrix) will have as a result that
when the value of s is equal to s*, the pose actually reached will be different from the
one that was specified, because of the bias introduced by the modeling errors.

— Obtaining s* by learning, though less convenient to achieve in practice, is there-
fore preferable to ensure that the task is well achieved. It consists in a prior phase of
bringing the robot to a desired position with respect to the object, then acquiring the
corresponding image, and calculating the value of s* exactly in the same way as for
the future calculations of s(¢). In the presence of modeling errors, we find ourselves in
the paradoxical situation of having biased desired and current values of visual features,
but a pose after convergence that is accurate aside from the measurement errors.

— A third, more elegant solution consists of managing to have the camera observe
the end-effector and the object of interest simultaneously. The calculation of s* can
then be achieved automatically [HOR 98]. This solution has rarely been implemented,
because, although it seems natural for eye-to-hand systems, it poses significant prob-
lems regarding where the camera is placed in the case of eye-in-hand systems.

We will now give in detail the different possible choices for the combination
matrix C by following a (simple) analysis of the system’s stability.

6.3.2. Regulating the task function

As we saw in the beginning of this section, developing a control law to regulate
the task function is separate from defining this function. In the literature, many types
of control laws have been suggested: non-linear control laws [HAS 93b, REY 98],
LQ or LQG optimal control [PAP 93, HAS 96], based on a GPC controller [GAN 02,
GIN 05], even robust H, [KHA 98] or by return of a non-stationary continuous return
state feedback [TSAK 98] in the case of mobile robots with nonholonomic constraints.
We will simply focus on achieving a decoupled exponential decrease of the task func-
tion, that is:

é=-\e [6.60]
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Using [6.59] and [6.2], if the matrix C is chosen constant, the differential of e is
given by:

e=Cs=CLgv [6.61]

We saw in sections 6.2.2 and 6.2.3 how to pass from the kinematic screw v to the
joint variables q. For simpler notations, we will assume from now on that the control
quantity is simply the controllable part of v, denoted by v, that is to say vq = v in
the case of an eye-in-hand system and vq = —Vy, in the case of an eye-to-hand system
(hence we will not be considering the problems caused by singularities of the robot
and its joint limits. Furthermore, we will not be considering the case of a robot with
less than six degrees of freedom. We will just point out that, in that case, we must of
course work directly in the joint space using [6.7] or [6.11], and not proceed in two
steps with v then . We therefore write:

de

¢=CLsvq+ 5

[6.62]

where 86—‘:' represents the variations of e caused either by the object’s motion (if an

eye-in-hand system is used), or by the camera’s motion (if an eye-to-hand system is
used). To control the robot’s 6 degrees of freedom, it is at least necessary to select s
such that Lg has rank 6 and we obtain as an ideal control law:

vq=(CLg)™" (—)\e — %) [6.63]

In the case where the visual features are expressed in the image, we saw that the
interaction matrix depends on the values of these visual features and on the depth
between the camera and the object in question. In the case of 3-D visual features, only
some rather strong hypotheses make it possible to obtain the analytical form of this
matrix. In any case, measurement and estimation errors are inevitable and the exact
value of Lg is unknown. Only an approximation f,\s can therefore be considered in
the control law. Also, the term 22 is usually unknown. Hence the control law used in

ot
practice is:

va=(C f,\s>_l (—)\e - %) [6.64]
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If we assume that this velocity is perfectly achieved, the use of [6.64] in [6.62]
leads to:

—\ 1 —\~1 e de
5= -ACL, (CL;) e-CL(CL) 2+ 6.65
© ¢ ot T o [6.65]
If we assume that 86—‘:' = gA—‘: = 0, then we notice that the positivity condition:
.\ -1
CL(CL) >0 [6.66]

is sufficient to ensure the decrease of ||e|| and therefore the system’s global asymptotic
stability (||e|| is then a Lyapunov function). Also, the resulting behavior will be the
same as the one specified in [6.60] under the unique condition that f,; = Lg and that
% = %. We will see in section 6.3.4 how we can estimate %, which then makes
it possible to reduce tracking errors. We will now focus on different possible choices

of C and Lg. Therefore we will assume from now on that % = 2¢ — () 50 as not to

at
complicate the notations too much.

6.3.2.1. Case where the dimension of s is 6 (k = 6)

If the dimension of s is 6, it is much more convenient to choose C = I, because
the behavior of s will then be the same as that of e (meaning that, in the ideal case, all
components of s will have a decoupled exponential decrease). In that case, we get the
control law:

—~1 —~

vg=—-ALs e=-ALg (s—s") [6.67]
and the sufficient stability condition:

LsLs >0 [6.68]

If we are able to properly measure the current value of Lg at each iteration of the
control law, taking this estimation into account makes it possible to come closest to
the ideal behavior § = —\ (s — s*).





