
Chapter 12

The Finite Element Method
for Porous Materials

12.1. Introduction

12.1.1. Position of the problem

To reduce the noise and vibration perturbations, it is beneficial to use the
dissipative properties of poroelastic materials. These materials are generally not
used alone, but rather inserted in composite mechanical assemblies made of elastic
structures, poroelastic materials and air insertions. If these structures are assemblies
of layers of materials, they are called multilayer complexes. If the porous material is
modified by an addition of solid or fluid inclusions, the term heterogenous porous
material is widely used. To predict the vibratory response of such assemblies, closed
form solutions can not generally be obtained and the calculation of the vibroacoustic
response must then be calculated using numerical techniques.

12.1.2. Outline of the finite element method

The finite element method (FEM) is nowadays the most common numerical
method used in static and dynamic structures for the resolution of boundary problems.
The boundary problem is continuous and the general principle of these numerical
methods is to approach this continuous problem with a finite number of degrees
of freedom. This method derives its popularity from its flexibility, considering its
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general nature or its implementation. Moreover, it is based on convergence theorems
from functional analysis, obtaining the validity criteria of the method. However, these
mathematical results may be directly interpreted from the physical point of view
either as the solution of a minimizing energy problem (provided, however, that some
symmetry properties are verified – which is not always the case) or as an analogy
with the classical principle of the virtual powers.

Unlike other methods, such as the finite difference method, the discretization
is not directly conducted on the partial differential equations themselves, but on
an equivalent integral formulation called the variational formulation. The first step
of the method is to obtain this variational formulation. The Ω domain occupied by
the structure is then divided into a finite number of subdomains called mesh. On
each mesh, a number of points called nodes are selected, and a set of functions
called interpolation functions are used to calculate the unknown parameters at each
element of the mesh according to the values of these parameters at the nodes. The
discretized problem is then obtained by writing the relations between the unknown
nodal parameters to obtain a linear system of equations. Once this system is solved,
it is then possible to determine, represent or use the approached solution. The FEM
is described in detail in many books [RAV 98, ZIE 89]. We will focus here on its
application to porous materials.

12.1.3. History of the finite element method for porous materials

The FEM began to be used to predict the response of structures involving
porous materials in the 1990s. The first formulations proposed involved variables
corresponding to the displacements of the solid phase and fluid phase: we can
mention the work of Kang and Bolton [KAN 95, KAN 96, KAN 97, KAN 99] or
the work of Panneton and Atalla [PAN 96a, PAN 96b, PAN 97]. Other formulations
where the displacement of the fluid phase was replaced by a relative displacement
between the two phases have since appeared [COY 94, COY 95, JOH 95, VIG 97].
Nevertheless, these formulations based on the movement had the disadvantage of
being relatively difficult to implement. It also became apparent that the most intuitive
variable to describe a fluid environment was not its displacement, but the pressure.
Atalla et al. [ATA 98] proposed a mixed formulation displacement-pressure, based
on an assumption of harmonic movement, and obtained the first mixed finite element
systems for porous materials. Several variations were then derived from the original
formulation, each of which is best suited to manage the given boundary or coupling
conditions. An exhaustive review was made by Sgard [SGA 02]. The methods based
on this formulation are today the most widely used. Nevertheless, although the
number of degrees of freedom per node is currently 4 and not 6, the systems obtained
by this method are still large, and, of course, frequency-dependent. More recently,
works in functional analysis have been conducted to justify the existence of such
solutions, but also to deal in an optimal manner, the stages of discretization and
thereby to reduce the numerical cost of the method [HÖR 03].
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Figure 12.1. Coupled problem

12.1.4. Continuous problems considered

Biot’s theory provides us with a set of partial differential equations and boundary
conditions governing the homogenized porous material. Figure 12.1 presents a
coupled, poro-elasto-acoustic, three-dimensional problem. It is here a composite
structure made of structures of various kinds; porous material, elastic solid and
acoustic cavities. Each subdomain is described by a set of partial differential
equations and boundary conditions at the borders that reflect the continuity
relationships.

We will describe them using the formulations {u,U} and {u, P}.

We will consider a poroelastic sub-structure occupying an area (Ω) of the physical
space. This sub-structure is limited by its border Γ, which can itself be partitioned as
described below.

Sd Interface where the displacement is imposed

Sc Interface where the stress is imposed

Γpe Interface with an elastic medium

Γpa Interface with an acoustic medium

Γpp Interface with a poroelastic medium

In the case of a single porous medium, we clearly have Γpe

⋃
Γpa

⋃
Γpp = ∅.

12.2. Boundary problem equations

12.2.1. The {u,U} formulation

We briefly recall here that the relations of the dynamics for the solid phase and the
fluid phase of the homogenized porous material are given by Biot’s theory:

∇ · σs = −ω2
(
ρ̃11u + ρ̃12U

)
, [12.1a]
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∇ · σf = −ω2
(
ρ̃12u + ρ̃22U

)
. [12.1b]

12.2.2. The {u, P} formulation

The {u, P} formulation was proposed by Atalla et al. in 1998 [ATA 98]. This
formulation is based on a change of variable taking the divergence of equation [12.1b]
which becomes:

−hΔP = −ω2
(
ρ̃22∇ · U + ρ̃12∇ · u). [12.2]

To eliminate the term with ∇ · U Atalla et al. have proposed using the stress strain
relation of the fluid phase. We therefore have:1

∇ · U = − h

R̃
P − Q̃

R̃
∇ · u. [12.3]

Equation [12.2] is then equivalent to the equation of motion of the fluid phase,
using a {u, P} formulation,

ΔP +
ω2

c̃2
P − ρ̃22ω

2

h2
γ̃∇ · u = 0, [12.4]

introducing the terms,

γ̃ = h

(
ρ̃12

ρ̃22
− Q̃

R̃

)
and c̃2 =

R̃

ρ̃22
. [12.5]

To eliminate the displacement of the fluid phase in the equation of motion of the
solid phase, we have to eliminate the dependence on inertial terms. For this purpose,
Atalla et al. proposed, in the harmonic system, extracting this variable from the
equation of motion of the fluid phase:

−h∇P = −ω2ρ̃22U − ω2ρ̃12u =⇒ U =
h

ρ̃22ω2
∇P − ρ̃12

ρ̃22
u. [12.6]

The second step is to eliminate the displacement variable of the fluid phase in the
stress tensor of the solid phase. To do so, relationship [12.3] is used, again to define
the following tensor:

σs
∅(u) = σs(u,U) + h

Q̃

R̃
P I. [12.7]

1. This relation can be expressed in the following way: the change in volume of the fluid phase
is due to a change of pressure in the pore network, but also to the expansion of the solid phase.
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We can notice that this tensor only depends on the movement of the solid phase,
and is identical to the tensor of solid stresses for P = 0. It is also called the in-vacuo
stress tensor. Its use permits the appearance of γ̃ in the equation of the movement of
the solid phase, which yields:

∇ · σs
∅(u) + ρ̃ω2u + γ̃∇P = 0, [12.8]

with the introduction of

ρ̃ = ρ̃11 − ρ̃12
2

ρ̃22
. [12.9]

We now have the set of two partial differential equations (PDEs) [12.8] and [12.4]
using the {u, P} formulation. We have presented the partial differential equations
governing the porous materials in two formulations. We shall now see how to write
the boundary conditions.

12.2.3. The boundary conditions

When writing the boundary conditions, the five types of interfaces presented above
should be considered. The full description of the expressions for each formulation and
each interface is not the purpose of this section. We will simply present the different
values that remain unchanged and how the relationships can be found.

On the interface Sd we impose a given displacement u0. Two relations are
inferred from this condition. The first reflects the continuity of the displacement at
the interface, and the second expresses the continuity of the normal displacement of
the porous material and the normal displacement u0 · n. These relations are, thus,
naturally written using the {u,U} formulation. Since the second relation involves the
movement of the fluid phase, its notation using a mixed formulation will be obtained
projecting the expression [12.6] on the normal of the surface. We thus obtain:

U|Sd
· n =

h

ρ̃22ω2

∂P

∂n
− ρ̃12

ρ̃22
u|Sd

· n. [12.10]

On Sc where we impose the pressure per unit of surface Pimp, we use two
relations on the stresses that reflect the continuity of forces on the interface as well
as the continuity of the pressure. In the displacement formulation, we then have two
Neumann boundary conditions on the stress tensors of the solid and fluid. In the
mixed formulation, a relationship is deduced for the in-vacuo stress tensor and the
condition of imposed pressure is naturally written.

On Γpe (interface with an elastic domain), we can write four relations. The first two
equations reflect the continuity of normal stress between the two phases in contact, the
third reflects the continuity of the normal displacement of the fluid phase and the last
reflects the continuity of the displacement of the solid phase.
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On Γpa, only three conditions are imposed. Indeed, for the acoustic environment
considered consisting of a perfect fluid, which does not contribute to shear waves,
there is no continuity condition of the tangential speed. The first two relationships
reflect the continuity of normal stresses between the two phases in contact, the latter
reflecting the continuity of the displacements, normal to the interface.

On Γpp (interface between two poroelastic phases), we can write four relations
reflecting the continuity of the total stress, of the pressure, of the displacement of the
solid phase and of the normal flow at the level of the interface.

These boundary problems are well posed in the cases considered in acoustics,
where the porous media are open. As stated above, these equations are never directly
discretized. We begin with the variational formulation of the problem.

12.3. Poroelastic variational formulations

We discuss here the several different poroelastic variational formulations. The
variational formulation of the problem is equivalent to the formulation of the boundary
problem based on the theorem of virtual powers. We can easily show that the boundary
problem involves the variational formulation. The opposite is true only in the sense of
the distributions. The advantage is that this variational formulation will be discretized
in a fairly rich manner.

12.3.1. The displacement formulations

The weak integral formulation of a poroelastic domain contained in a volume Ω is
given by Panneton [PAN 96a, PAN 96b]. The first step consists of multiplying each of
the equations of displacement [12.1] by an admissible displacement field, i.e. verifying
the corresponding boundary conditions, δu for the solid phase and δU for the fluid
phase. The equations are then integrated on the volume Ω. We then obtain the two
equations: ∫

Ω

∇ · σsδu dΩ +
∫

Ω

ω2
(
ρ̃11u + ρ̃12U

)
δu dΩ = 0, [12.11a]∫

Ω

∇ · σfδU dΩ +
∫

Ω

ω2
(
ρ̃12u + ρ̃22U

)
δU dΩ = 0. [12.11b]

The first integral of each of these equations is then rewritten using Green’s formula
and yields:∫

Ω

(
σs(u,U) εs(δu) − ω2

(
ρ̃11u · δu + ρ̃12U · δu)) dΩ

=
∮

∂Ω

[
σs(u,U) · n]δudΓ ∀δu

[12.12a]
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∫
Ω

(
σf (u,U) εf (δU) − ω2

(
ρ̃22U · δU + ρ̃12u · δU)) dΩ

=
∮

∂Ω

[
σf (u,U) · n]δUdΓ ∀δU.

[12.12b]

This system of two equations is called the variational formulation of the poroelastic
problem in motion. This construction shows clearly that the solution of the boundary
problem is a solution of the variational problem.

12.3.2. Mixed formulations

In mixed formulations, the methodology to obtain the variational formulation
remains the same using displacement and pressure fields. Several mixed formulations
were developed and implemented. They all have, however, the same starting point
which is the {u, P} formulation given by Atalla et al. [ATA 98]. This reads:∫

Ω

σs
∅(u) εs(δu) dΩ − ω2

∫
Ω

ρ̃u · δu dΩ −
∫

Ω

γ̃∇P · δudΩ

−
∮

∂Ω

[
σs

∅(u) · n]δu dΓ ∀δu,
[12.13a]

∫
Ω

[
h2

ω2ρ̃22
∇P · ∇δP − h2

R̃
PδP

]
dΩ −

∫
Ω

γ̃u · ∇δP dΩ

+
∮

∂Ω

[
γ̃u · n − h2

ρ̃22ω2

∂P

∂n

]
δP dΓ ∀δP.

[12.13b]

This original formulation was then written under several variants, that differ from
each other by rewriting the boundary integrals using the divergence theorem. In 2001,
Atalla et al. proposed an alternate layout for this formulation:∫

Ω

(
σs

∅(u) εs(δu) − ω2ρ̃u · δu − h

α̃
∇P · δuh

(
1 +

Q̃

R̃

)
P∇ · δu

)
dΩ

−
∮

∂Ω

[
σt(u, P ) · n]δu dΓ ∀δu,

[12.14a]

∫
Ω

(
h2

ω2ρ̃22
∇P · ∇δP− h2

R̃
PδP− h

α̃
u · ∇δPh

(
1+

Q̃

R̃

)
∇ · uδP

)
dΩ

−
∮

∂Ω

h
(
Un − un

)
δP dΓ ∀δP.

[12.14b]
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Without the help of the porous model, this formulation is naturally coupled with
elastic or acoustic structures. It is therefore interesting to model heterogenous porous
materials.

12.4. Discretized systems

The next step is to discretize the integrals involved in the variational formulations.
One can express them with the nodal values of the fields and using the interpolation
functions. Indeed, we have for each of the elements:

ue =
[
Nu

]e
ue Ue =

[
NU

]e
Ue, [12.15]

where ue and Ue are the values of the continuous field, ue and Ue the values of the
field at the nodes, and [Nu] and [NU ] correspond to form-factor functions on element
e. These relationships enable us to obtain the discretization of the elementary integrals.
Therefore, we can build for example:∫

Ω

δut
[
Nu

]e t
[
Nu

]e
u dΩ=δut

(∫
Ω

δ
[
Nu

]e t[Nu]e dΩ
)
u=δut

[
E1

]e
u. [12.16]

[E1]e is called the elementary matrix. It is also possible to discretize the other
integrals in the same way. Equation [12.12a] then yields:

δut
([

K̂ss

]
u +

[
K̂sf

]
U − ω2ρ̃11

[
M̂ss

]
u − ω2ρ̃12

[
M̂sf

]
U − Fs

)
= 0. [12.17a]

The matrices involved in these equations were constructed by assembling
elementary matrices.

δUt
([

K̂sf

]t
u+
[
K̂ff

]
U−ω2ρ̃12

[
M̂sf

]t
u−ω2ρ̃22

[
M̂sf

]
U−Ff

)
= 0. [12.17b]

The matrix of the linear problem to be solved is therefore written as:[ [
K̂ss

] [
K̂sf

]
[
K̂sf

]t [
K̂ff

]
]{

u
U

}
− ω2

[
ρ̃11

[
M̂ss

]
ρ̃12

[
M̂sf

]
ρ̃12

[
M̂sf

]t
ρ̃22

[
M̂ff

]
]
. [12.18]

The poroelastic problem using the {u, P} formulation is therefore given by
[ATA 98] and uses the matrix:⎡⎢⎣

(
1 + jηs

)[
Kint

]
+ (jω)2ρ̃

[
Mint

] −γ̃[Cint

]
−ω2γ̃

[
Cint

]t h2

ρ̃22

[
Hint

]− ω2h
2

R̃

[
Qint

]
⎤⎥⎦ . [12.19]
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[Kint], [Mint] are associated with the stiffness matrix, and with the mass matrix of the
solid phase, respectively. [Hint] and [Qint] are associated with the matrices of kinetic
energy and of compression of the fluid phase, respectively. These matrices come from
discretization using the finite element method.

It is possible to make the system symmetrical2, writing it as:[
(jω)2[K̃] + (jω)4 [M̃] − (jω)2[C̃]

−(jω)2[C̃]t [H̃] − (jω)2[Q̃]

]{
u
P

}
=

{
Fs

Ff

}
. [12.20]

This formulation requires the construction of five global matrices. However, the
obtained systems are generally ill-conditioned, due to the non-homogenous nature of
the variables. Therefore, algorithms of resolution should reflect this feature. Note,
however, that this does not present a limitation in modern practice because such
conditions are usually able to be accepted.

12.4.1. Discussion about discretization

The resolution of a vibroacoustic problem involving an elastic structure, a fluid
medium and a poroelastic medium will require discretization of each of these domains.
For several reasons, the domain that will determine the size of the system is the
poroelastic domain:

– Wavelengths of the Biot’s waves are generally smaller than those of acoustic
waves. To meet the mesh criterion of six nodes per wavelength, we will require a larger
nodal density in the porous domain than in the fluid domain [DAU 01].

– The poroelastic area is meshed by volume elements, requiring a discretization in
the 3 spatial directions, unlike the elements of structures – plates or shells – requiring
only a mesh in 2 directions.

– The number of degrees of freedom per node of the poroelastic elements is 4 to 6
depending on whether it uses a mixed or displacement formulation, 4 to 6 times higher
than a component of the fluid.

Thus, it appears that the presence of the porous material will impose some rules
for the determination of an adequate mesh, these rules are quite strong for the
discretization. This therefore limits the scope of such methods because it requires
relatively important calculation means. Nevertheless, they are now the only way to
study this type of problem [PAN 96b, DAU 03].

The comparison between the displacement formulation and the pressure
formulation indicates that the number of unknowns per node is more limited for the

2. Real symmetry.
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mixed formulations for an equivalent mesh. The equivalence between the required
meshes to ensure the convergence of each of the formulations is a point that still needs
to be studied [DAZ 08]. It is important to note that although the mixed formulation
has fewer nodes, it requires the calculation of an additional matrix to take into account
the volume coupling between the two phases. The construction time of the systems to
be resolved is therefore more important. However, for large scale problems the most
expensive step, in terms of computation time, is the resolution of the linear system
that is directly linked to the number of degrees of freedom of the system. The mixed
formulations therefore seem more interesting in terms of computation time, but they
are more difficult to address – especially for a programmer unfamiliar with this
domain. In regards to the discretization, the usual linear elements provide satisfactory
results for a fluid, but may not correctly converge for a poroelastic material. These
elements do not correctly take into account the shear and bending deformations. To
correct this defect, the order of the functions of interpolation can be increased using
quadratic elements, or hierarchical finite elements. These elements can converge
without refining the mesh. However, the elementary matrices require a greater
calculation time – depending on the order of these matrices. Another method consists
of using modified linear elements so that deformations shearing and bending are
properly taken into account. Due to the size of systems to be solved, the use of finite
poroelastic elements remained until recently limited to reduce-sized configurations
that can give a good representation of real structures. This drives to the development
and the use of simplified models [DAU 03, DOU 07, DAZ 09]. Nevertheless, the
arrival of powerful means of calculation at affordable prices now permits us to
relatively easily address the complex problems stated in the introduction. Note that
recently, a new displacement formulation proposed by Dazel [DAZ 07] allows the
use of a much more efficient resolution method based on normal modes [DAZ 09].

12.5. Conclusion

This section was designed to introduce the numerical modeling of porous
materials, using the finite element method. After presenting the historical context, the
relevant problems with the boundary conditions have been recalled, then poroelastic
variational formulations have been presented. The discretization of these variational
formulations was then exposed and discussed. Possible examples of such techniques
will be presented in Chapter 28.
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Chapter 13  

Transducer for Bulk Waves 

13.1. Introduction  

The experimental study of acoustic wave propagation requires devices called 
transducers, which are able to generate these waves and detect them efficiently. The 
means used depend on the practical constraints and technological possibilities. For 
example, if no mechanical contact with the sample is allowed, a solution is to 
generate bulk or surface acoustic waves with a laser pulse and to detect it after 
propagation by optical interferometry [ROY 96a]. At low frequencies (f < 1 MHz) 
and when the acoustic impedance Z of the propagation medium is relatively small 
(Z < 10 MRayl.), the coupling with the transducer can be achieved thanks to the air 
[SCH 95]. 

In most cases, the transducer is a damped electromechanical resonator consisting 
of a piezoelectric solid carrying two electrodes, either in direct contact with the 
propagation medium, or through a liquid (water). A plate of large lateral dimensions 
compared to the wavelength λ and of thickness d of the same order of magnitude as 
λ/2 generates plane bulk waves, preferentially at the frequency fP = VP/2d where VP 
is the speed of the elastic waves (longitudinal or transverse) in the piezoelectric 
material. The operation of such a transducer can be analyzed according to a one-
dimensional model [KIN 87]. Before developing this model, we note the essential 
properties of the propagation of elastic waves in a piezoelectric medium. Examples 
of impulse and frequency responses are given in the last section. 

                              
Chapter written by Daniel ROYER. 
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13.1.1. Piezoelectric materials – structures  

The piezoelectric material is the key element of a transducer because it converts 
electrical energy from an external source into acoustic energy which can be used in 
the form of a bulk wave propagating in the medium that we consider and vice versa. 

Piezoelectricity reflects the linear dependence between the mechanical and 
electrical properties of some anisotropic materials. The direct piezoelectric effect, 
discovered by Pierre and Jacques Curie in 1880, expresses the appearance of a 
polarization, i.e. an electrical induction D, in a dielectric subjected to a strain S: 

D = εSE + eS. [13.1] 

εS and e are, respectively, the dielectric constant (at a constant strain) and the 
piezoelectric constant. The inverse piezoelectric effect, predicted by Lippman one 
year later, indicates that a piezoelectric solid placed in an electrical field distorts 
itself. The mechanical stress T is expressed by the formula: 

T = cES – eE, [13.2] 

which generalizes Hooke’s law (equation [1.43]). cE is the stiffness constant when 
the electrical field is held constant. The fact that the proportionality coefficients for 
the two effects are opposite to each other [ROY 96b] results from thermodynamic 
considerations. The first effect is used to detect elastic waves, the second one for 
generating them.  

With tensor notation and using the summation convention on the repeated 
indices, the behavior laws of a piezoelectric solid are written:  

kljklk
S
jkjkkijkl

E
ijklij SeEDEeScT       and    +=−= ε . [13.3] 

Due to the symmetry of the strain tensor (Skl = Slk), the piezoelectric tensor, of 
rank 3, has only 18 components ejα with j = 1 to 3 and α = 1 to 6. The index α 
corresponds to the pair (kl) according to the following correspondence: 

(11) → 1, (22) → 2, (33) → 3, (23) = (32) → 4, (13) = (31) → 5, (12) = (21) → 6. 

These constants can be set out in a 3 × 6 table and their values are typically 
between 0.1 and 20 C/m2. 
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eiα =
 e11 e12 e13 e14 e15 e16  

  e21 e22 e23 e24 e25 e26  

 e31 e32 e33 e34 e35 e36  

 [13.4] 

The ability of a piezoelectric material to generate elastic waves is measured by 
its electromechanical coupling coefficient K. This coefficient expresses the influence 
of the piezoelectricity on the velocity V of the elastic waves, by definition: 

K2 =
V2 − V ' 2

V 2  [13.5] 

where V’ is the velocity calculated without taking account the piezoelectric effect. 

The equations of propagation result from the application of Newton’s second law 
and Poisson’s equation, which governs quasi-static electrical phenomena: 
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where ρ is the mass density and ρe  the density of free charges. 

Given the expressions of the strain Sij  and of the electric field Ek  as functions of 
the mechanical displacement ul  and the electrical potential φ: 

k
k

l

k

k

l
kl x

E
x
u

x
uS

∂
∂φ

∂
∂

∂
∂ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ =       and       

2
1= , [13.8] 

and substituting in equations [13.3] leads, in the absence of electrical sources 
(ρe = 0) , to four homogeneous second-order differential equations (i = 1, 2, 3): 
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 [13.9] 

The solution in the form of plane waves, with a polarization pl , propagating in 
the direction of the unit vector jn at the phase velocity V = ω/k: 
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)(exp     and      )(exp 0 jjjjll xkntixkntipu –– ωφφω ==  [13.10] 

leads, by writing 

kj
S
jk

S
kjjkllkj

E
ijklil nnnnennc εεγ ===Γ      ,    , , [13.11] 

to the system of equations (i = 1, 2, 3) 

0     and       0
2

0 =−=+Γ φεγρφγ S
lliilil ppVp , [13.12] 

which generalizes the Christoffel equations (section 1.2.2) that describe the behavior 
of a non-piezoelectric material. The elimination of the electric potential φ0 leads to  

S
li

ilililil pVp
ε
γγρ +Γ=Γ=Γ th              wi2 . [13.13] 

The velocity V and the polarization pl  of the plane elastic waves propagating in 
a piezoelectric solid can be obtained by looking for the eigenvalues and eigenvectors 
of the Christoffel matrix ilΓ . Since this matrix is symmetric, the three eigenvalues 
are real and the eigenvectors are mutually orthogonal. The velocity of the three 
plane waves propagating in the same direction are solutions of the secular equation: 

0=det ][ 2
ilil V δρ−Γ . [13.14] 

In an anisotropic medium, the propagation of plane elastic waves is illustrated by 
the slowness surface, obtained from the vector m = n/V drawn from an arbitrary 
origin O. It is composed of three layers, one for the quasi-longitudinal wave and one 
for each transverse or quasi-transverse wave (section 1.2.2.3). 

Figure 13.1 refers to lithium niobate (LiNbO3) which belongs to the trigonal 
class 3m. The dashed curves have been calculated ignoring the piezoelectric effect. 
The transverse wave (T) polarized along the X-axis, perpendicular to the propagation 
plane YZ, is not piezoelectrically coupled (V = V’). For the other two modes (QL and 
QT), the difference between the solid and dashed curves, illustrates the 
electromechanical coupling. 

By multiplying the Christoffel equation [13.12] by the complex conjugate pi *  of 
the polarization, which is assumed to be normalized ( pi pi * = 1) , it becomes: 
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As the polarizations ' and  ii pp  are similar (they are identical if the mode is 
purely longitudinal or transverse), the square of the electromechanical coupling 
coefficient [13.5] can be written as 
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Figure 13.1. Section of the slowness surface of lithium niobate in the YZ plane. The dashed 
curves do not take into account the piezoelectric effect. 

where ii pe γ =  has the dimension of a piezoelectric constant and *ilil
E ppc Γ=  

of a stiffness constant. This coefficient (less than unity) is also expressed as a 
function of the average densities of the acoustic and electrical potential energies: 
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From [13.16] 
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the square of the electromechanical coupling coefficient is the ratio of the electric 
potential energy to the total potential energy. This factor characterizes the ability of 
the piezoelectric material to generate acoustic waves. Indeed, whatever its 
polarization, the electric field associated with a plane wave is longitudinal. The 
inverse piezoelectric effect, plane acoustic waves are generated by applying an 
electric field perpendicular to the face of the plate. For example, the curves in 
Figure 13.1 show that a quasi-longitudinal (QL) wave is generated selectively by a 
crystal plate having a cut Y + 36° (KL = 0.49, KT = 0) and a quasi-transverse (QT) 
wave is generated selectively by a plate of cut Y + 163° with a coupling coefficient 
KT = 0.62 (KL = 0). 

The structure of the transducer (Figure 13.2) and the choice of the piezoelectric 
material, whose thickness is a fraction of the wavelength λ, depend on the frequency 
of the waves to be generated and of the propagation medium (solid or liquid). It is 
characterized by its acoustic impedance Z = ρV, which is expressed in MRayl. 
(106 Rayl.).  

Acoustic 
beam

Oriented layer or  
thin monocrystal

Matching  
layer Crystal

Electrodes

Backing

Impedance 
matching layers

Water

Piezoelectric  
ceramic plate

E
→

→

a)                                                                    b)           

Figure 13.2. Structure of a single element plane transducer used to generate bulk waves,  
a) at low frequencies (f < 25 MHz), b) at intermediate and high frequencies (f > 25 MHz) 

Low frequencies ( mm1.02/MHz25 >→< λf ). The material is very often a 
piezoelectric ceramic plate whose faces are metal-coated and loaded on the back 
with an absorbing medium that damps the resonator and consequently widens the 
bandwidth (Figure 13.2a). However, in non-destructive testing and in medical 
ultrasound, the acoustic impedance of piezoelectric ceramics (ZP ≥ 30 MRayl. with 
VP ≅ 4,500 m/s and ρP ≅ 7,500 kg/m3) is too large compared to that of the 
propagation medium (water or the human body: Z ≅ 1.5 MRayl. with V ≅ 1,500 m/s 
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and ρ ≅ 103 kg/m3). The mechanical matching between the transducer and the 
propagation medium, which is needed to increase the efficiency of the “electrical 
energy ↔ mechanical energy” conversion, requires the use of intermediate layers. 
One way to reduce the number of matching layers is to use a piezocomposite 
material. The transducer is composed of active ceramic elements, in the form of 
rods, for example, embedded in a passive resin, with a much smaller acoustic 
impedance (3 MRayl.). The overall impedance of the transducer is thereby lower 
(5 to 15 MRayl., for a volume fraction of ceramic between 15 and 50%). Contrary to 
appearance, the electromechanical coupling coefficient is larger than that of a 
homogeneous plate. Indeed, for the same supply voltage, a rod surrounded by a 
relatively soft material vibrates more than a rod embedded in a ceramic block. 
Nevertheless, the piezocomposite transducer, very commonly used, has the 
disadvantage of a limited operating frequency (f ≤ 15 MHz); this results from the 
fact that the period of the rods in the polymer matrix must be small compared to the 
overall thickness. Another variety of transducers based on polymers and copolymers 
such as P(VDF-TrFE), a compound of vinylidene fluoride (VDF) and 
trifluoroethylene (TrFE), able to operate at frequencies larger than 100 MHz, present 
some advantages: their flexibility allows a wide range of shapes, their low acoustic 
impedance avoids the use of a matching layer, their low cost and availability leads to 
applications in medical acoustic and non-destructive testing (acoustic microscopy). 

Intermediate frequencies (25 MHz < f < 500 MHz → 5 μm < λ/2 < 100 μm). 
One technique is to paste with a resin or to solder, using indium metallic diffusion 
under pressure, a thick monocrystal (>100 µm), and then to reduce it to the desired 
thickness by polishing. Figure 13.2b shows a transducer for acoustic microscopy, 
acousto-optic interaction or a high frequency delay line. Due to its high 
electromechanical coupling coefficient, lithium niobate is often used for this kind of 
application. 

High frequencies (f > 1 GHz → λ/2 < 3 μm). The piezoelectric material is 
deposited in the form of a thin layer onto the substrate already coated with a metallic 
film constituting the internal electrode. Most often it is a layer of zinc oxide (ZnO) 
or of aluminum nitride (AlN) deposited by sputtering on an alumina monocrystal 
(sapphire). This propagation medium undergoes very small losses at high 
frequencies. As the A6 axis of ZnO is always perpendicular to the surface, the 
piezoelectric layer generates only longitudinal waves. In order to create high 
frequency transverse waves, a plate of lithium niobate of cut Y + 163° must be 
soldered by diffusion and reduced to the desired thickness (some µm) first by 
polishing, and then by chemical etching or ion bombardment. In this kind of 
transducer, the role of the electrodes, at least that of the internal electrode, must be 
considered. 
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The main piezoelectric materials and their most relevant characteristics as 
transducers are given in Table 13.1. 
 

Material Section Polar. V (m/s) Z(Mrayl.) K εS/ε0 

LiNbO3 Y + 36° Quasi-L 7340 34.5 0.49 38.8 

LiNbO3 Y + 163° Quasi-T 4560 21.4 0.62 42.8 

PZT4 Ceramic Z L 4560 34.2 0.51 633 

PZT4 Ceramic Z T ⊥ Z 2600 19.5 0.71 735 

P(VDF-TrFE) Z L 2400 4.5 0.30 6.0 

ZnO Z L 6400 36.3 0.28 8.8 

AlN  Z L 10400 34 0.17 8.5 

Table 13.1. Velocity (V), acoustic impedance (Z), electromechanical coupling coefficient (K) 
and relative permittivity (εS/ε0) for the main piezoelectric materials used as transducers 

13.1.2. One-dimensional model – equivalent circuits 

We assume that the thickness d of the piezoelectric slab, large compared to one 
of its electrodes, is small compared to its lateral dimensions. The voltage is applied 
(or gathered if the transducer is working in the receiving mode) between those 
electrodes. Under these circumstances, a one-dimensional model (without subscript 
of coordinates) is enough (Figure 13.3). An analysis method consists of associating 
this structure with an electromechanical circuit obtained by juxtaposing the 
equivalent circuit to the different parts, force and particle velocity playing similar 
roles to the voltage and the electrical intensity. 

x                    x                        1 2

Propagation 
medium

Piezoelectric 
solid 

Backing

     Z                     ZP 2Z1

x

U = U   e iωt
0

I

E

 

Figure 13.3. One-dimensional model of a low frequency transducer. It is divided into  
three parts: the propagation medium of impedance Z2, the piezoelectric material  

of impedance ZP and the backing medium of impedance Z1 
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13.1.2.1. Impedance matrix 

If the conditions for the generation of a pure longitudinal or transverse wave are 
fulfilled, the state equations of the piezoelectric solid reduce to [13.1] and [13.2], 
where cE, εS and e are appropriate constants given the orientation of the 
crystallographic axis and the type of wave. For example, in the case of a Z-cut 
piezoelectric ceramic or zinc oxide layer and for a longitudinal wave: 

SSEE eecc 333333  and  , εε === .  

From Poisson’s equation [13.7], the electrical induction D is uniform in the 
insulating piezoelectric solid ( 0/0 =∂∂→= xDeρ ). The charge conservation 
equation imposes a uniform current density j: 

A
tItj

t
D )(

)( ==
∂
∂ , 

where I is the current intensity and A the area of the electrodes. 

Eliminating the electric field E in equations [13.1] and [13.2] in order to express 
the stress as a function of the electrical induction D 

       re       whe, S
D ehhD

x
ucT

ε
=−

∂
∂=  [13.17] 

and introducing the stiffness at constant electrical induction cD = cE + e2/εS. By 
differentiating with respect to time, we obtain the particle velocity v = ∂u / ∂t : 

∂T
∂ t

= cD ∂v
∂x

−
h
A I(t) . [13.18] 

Differentiating equation [13.17] with respect to x and considering dynamic equation 
[13.6], leads to: 

c D ∂2v

∂x2 = ρ
∂2v

∂ t 2 . [13.19] 

The solution of this equation of propagation is the sum of two waves, of 
amplitudes a and b, propagating in opposite directions at velocity V = c D / ρ ; in 
the harmonic regime and omitting the factor e

iωt :  



 



Chapter 31  

Use of Time-reversal 

31.1. Use of time-reversal 

Because of its ability to learn to focus in an adaptive way in a very short time in 
complex heterogenous media, time-reversal can be applied successfully in the 
domain of imaging and ultrasound therapy [FIN 03]. It can be used to correct the 
distortions induced by the skull on the therapy beam in a treatment of brain tumors 
by focused high intensity ultrasound. It is also able to learn to follow in real-time the 
movements of a kidney stone during a lithotripsy treatment, and also to detect, with 
a better accuracy than conventional ultrasound imaging, the micro-calcifications 
present in the breast. Applying the principle of time-reversal, focusing on resonant 
cavities allows, thanks to the great impact of temporal compression of ultrasonic 
signals, a large increase in the amplitude of the overpressure created by conventional 
transducers for the destruction of kidney stones. 

31.1.1. Monitoring and destruction of kidney stones by time-reversal  

Extracorporeal ultrasound lithotripsy (destruction of kidney stones or renal 
lithiasis or gallbladder) appeared in 1980 and can now handle the bulk of renal 
lithiasis. Nevertheless, although lithiasis can be located precisely with X-ray 
imaging, existing systems are unable to track in real-time the movements of tissue 
caused by the breathing of the patient. It is estimated that more than 66% of the 
shots miss their target and cause damage to surrounding tissues such as local 
hemorrhage. 

                              
Chapter written by Mickaël TANTER and Mathias FINK. 
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31.1.1.1. Correction of respiratory movements by time-reversal  

The principle of adaptive focusing by time-reversal is particularly well suited to 
this problem. Indeed, the destruction of kidney stones is classically done with an 
ultrasound beam created by a single spherical piezoelectric dome focused 
permanently on the same position. However, during treatment, it appears that the 
patient’s respiratory movements move the desired target, which very often moves 
out of the focus zone of the stone. It is known that less than 20% of the ultrasonic 
shots actually reach the kidney stone, resulting in an important loss of efficiency and 
in quite long treatment periods. The Laboratoire Ondes et Acoustique at ESPCI 
(Paris, France) has developed a time-reversal mirror to track the movements of the 
stone, and thereby ensure that all the ultrasonic beams effectively reach the desired 
target. The kidney stone is used as a passive acoustic source, on which the time-
reversal mirror learns to “autofocus” (see sections 15.1.2 and 15.1.5). 

 

Figure 31.1. Tracking of the movements of a kidney stone through the technique of adaptive 
focusing by time-reversal 

It is indeed possible, using the method presented in Figure 31.1, to force the 
system to focus in real time on the desired target. A first wave is emitted, by the 
array of piezoelectric transducers, of high-electric power (a). Then the backscattered 
waves mainly come from the kidney stone, because of its great reflectivity compared 
to the surrounding tissue (b). The backscattered signals are time-reversed and 
reissued by the transducer array. The ultrasound beam refocuses then naturally on 
the kidney stone (c). Because of the rapid propagation of ultrasound (1500 m.s–1), 
this operation can be repeated over 100 times per second. As the movements caused 
by the breathing of the patient are much slower, it ensures that the ultrasound beam 
remains focused on its target. 
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a) b) 

c) d) 

Figure 31.2. Ultrasonic echoes received on the transducer array after one (a) and three (c) 
iterations of the time-reversal process. Spatial distributions of the ultrasound beam in the 

focalization plane at the first (b) and third (d) iteration 

As shown in Figure 31.2, after a few iterations of the time-reversal focalization 
process, the echoes from the target are perfectly selected compared to echoes from 
the surrounding tissue, and the quality of the focus beam slims down on the kidney 
stone. These iterations of the process take place in a very short time (a few tens of 
μs) and ensure that the ultrasound beam remains permanently focused on the target. 

A first prototype including an electronic device of 64 channels operating in 
parallel has been made in recent years, in collaboration with the company 
Technomed. The numerous in vitro experiments on kidney stones and gallstones 
have proved its efficiency. The time-reversal mirror helps to locate the lithiasis in 
less than 40 ms, thus providing real-time monitoring. 
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Figure 31.3. Futuristic vision of a time-reversal mirror for the destruction of kidney stones 

Clinical trials at the Cochin hospital in Paris (for nephritic lithiasis) and the 
Edouard Herriot hospital in Lyon (for cholelithiasis) have also given very 
encouraging results. We can thus follow the movements of lithiasis in real time. 
Such a system in its final version could look like the illustration shown in 
Figure 31.3 [FIN 99]. 

Due to the large number of piezoelectric transducers necessary to ensure both i) 
an extremely important overpressure at the acoustic focus, and ii) a capacity of 
electronic movement of the focal point by several centimeters around the initial 
focal position, the price of such a system remains prohibitive so far. 

31.1.1.2. Time-reversal and ultrasonic pulse compression 

To remedy this shortcoming, time-reversal focusing may also be used to reduce 
very substantially the number of necessary transducers to develop such a system. 
This significant improvement is based on the exploitation by time-reversal 
processing of the many reverberations of an ultrasonic wave in a solid waveguide 
[MON 02]. The new system consists of a small number of piezoelectric transducers 
glued to one end of a solid Duralumin waveguide (see Figure 31.4). The other end of 
the solid tube is against the skin of the patient. 
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The acoustic signal coming from a source located at the desired focal point (i.e. 
from the kidney stone) suffers a big temporal dispersion during its propagation 
through the solid tube. The signal received by the transducers can have a temporal 
length 1,000 times larger than the initial impulse (see Figure 31.5b).  

After time-reversal and re-emission by the transducers, the resulting wave 
focuses on the focus point, just as if we were replaying the film of wave propagation 
in reverse order. Thus, all the energy contained in a signal of several milliseconds is 
recompressed at the focus to form a signal of a few microseconds.  

The result is a huge amplification of the signal, which then ensures the 
destruction of the stone by mechanical effect. This amplification of the focused 
signal by time-reversal in a reverberant medium is the acoustic analog of the 
amplification of light in femtosecond lasers. 

8 
m

m

32
  m

m

50  cm

(a)   Emission  transducers 1Mhz (b)  Hydrophone
 

Figure 31.4. Principle of amplification of ultrasonic  
signal by pulse compression  

Two prototypes have been developed and a maximum gain of 15 (in terms of the 
acoustic overpressure at the focus) has been experimentally measured. Through the 
use of reverberations in the solid tube, it should be possible in the future to reduce 
the number of necessary transducers for real-time tracking of kidney stones by a 
factor greater than 20! 



832     Materials and Acoustics Handbook 

 

Figure 31.5. Principle of ultrasound amplification by temporal recompression.  
(a) During the calibration phase, seven transducers of the array record the temporal signal 

coming from an ultrasound source. (b) the signal is stored in memory. During the experiment, 
we emit a temporally-reversed signal. This refocuses all the energy of the emission signal at 

the focal point in a very short time. There is a great temporal compression, which greatly 
increases the amplitude of the signal at the focus 
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(a)  150 (b)  300 (c) 600

1 cm

 

Figure 31.6. Impacts of the ultrasound beam on a piece of chalk  
for 150, 300 and 600 successive insonifications 

31.1.2. Ultrasound focalization in the  brain by time-reversal  

Non-invasive brain surgery using ultrasonic beams is certainly the application 
for which the contribution of the principle of time-reversal focusing is the most 
invaluable. 

Devices for extracorporal “surgery” of cancerous brain tumors, for which 
conventional surgery is too delicate, are currently under development. Their 
mechanism is based on the use of a focused ultrasound wave to create, at the 
acoustic focus, a temperature rise sufficient to destroy cells. This focused ultrasound 
wave is generated by an array made of a large number of piezoelectric transducers 
spread over an area surrounding the skull [TER 01]. 

However, the realization of such a focused ultrasound beam is difficult, due to 
the heterogenities of biological tissues crossed. In this application, the difficulties 
are intensified by the large discrepancy between ultrasound speeds in bone and in 
soft tissues, and also by the significant loss of energy when crossing the bone. This 
leads to a significant deterioration, or even a deviation of the beam. This constraint 
involves a focus that fits the medium, and therefore requires the use of an array of 
piezoelectric transducers operating with an electronic focus. The technique of time-
reversal focusing helps to achieve excellent results in terms of correction of the 
emission beam in these extreme conditions [TAN 98]. 



834     Materials and Acoustics Handbook 

Note however that the principle of time-reversal takes advantage of the time-
reversal invariance of the wave equation in non-dissipative media. But apart from its 
heterogenities in speed of sound and density, the skull is also a medium with 
absorption heterogenities. Ultrasound absorption degrades the quality of the 
focusing by time-reversal. The time-reversal process can be modified to take into 
account this absorption phenomena in the bone of the skull; this approach may also 
be extended by a new technique of adaptive focusing called spatio-temporal reverse 
filtering, which helps to totally correct the damage caused by the bone of the skull 
on the focused ultrasound beams. This technique generalizes the time-reversal 
focusing to absorbent media. 

31.1.2.1. Adaptive focusing: time-reversal and biopsy 
The use of time-reversal mirrors is particularly suited for brain therapy. Time-

reversal, however, requires the presence at the focal point of an acoustic source, a 
sensor or a reflector, on which the system initially learns to make an “autofocus”. 
This reference can be provided during the biopsy, which is a minimally intrusive 
surgical intervention, made before most major surgery. A tiny acoustic source would 
be placed at the end of the surgical instrument intended to take a sample of tissue. 
The treatment then consists of putting the system in adjustment on such a reference 
throughout the heterogenous medium by issuing a pulse signal from this small 
acoustic source. The signals received on the transducer array, located against the 
cranial wall, are stored in memory, and the tiny acoustic source, connected to the 
surgical instrument, is removed. These received signals are then used to calculate the 
temporal codes to issue to each element of the array. These emission codes are 
stored in memory pending the outcome of the biopsy. The system can again focus on 
the reference point, but the focal point can also be moved electronically around this 
position to explore the entire tumor. The focalizations obtained have an identical 
quality to those obtained in a homogeneous medium, and have been obtained up to 
side-lobe levels of –20 dB. This contrast is quite sufficient for therapy, where the 
temperature rise is proportional to the energy provided, and is therefore obtained 
with a contrast larger than 100. On the other hand, the focal point has been moved 
more than 15 mm on both sides of the reference location, keeping a very good 
contrast. 

31.1.2.2. Simulated time-reversal: ultrasound focalization guided by X-ray imaging 

To be completely free from the biopsy stage and work in a totally non-invasive 
way, we can also be guided by Scanner X-ray imaging. It is indeed possible to 
completely achieve the first stage of time-reversal focusing by simulation. For that, 
we can use codes from numerical simulation by finite differences, helping to model 
the propagation of ultrasonic waves in various types of complex heterogenous and 
absorbent media. 
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X-ray imaging of the skull of the patient may indeed bring us the input 
parameters necessary for this calculation code (speed of sound, density of bones, and 
ultrasonic absorption) to completely model the propagation of ultrasonic waves 
through the skull. Thus, conducting an examination by X-rays helps to totally model 
the propagation of the ultrasound beam through the skull. 

(a) t = 10 µs (b) t = 16 µs 

(c) t = 22 µs (d) t = 28 µs 

(e) t = 34 µs (f) t = 38 µs 

Figure 31.7. Numerical simulation of the propagation of a focused ultrasound wave through 
the bone structure of the skull: two-dimensional image of the ultrasound field at different 

moments. The acoustic parameters are deducted from the X-ray image of the skull 

As shown in Figure 31.8, the correlation between numerical simulations and 
experiments is extremely good. It will therefore be possible in the near future to be 
free from the biopsy stage and to make a totally extracorporeal treatment of brain 
tumors. 




