
Chapter 1

Introduction

“Meshless” methods are alternative techniques to the finite element method
in solving partial differential equations. While the finite element method derives an
approximation based on the elements, using shape functions, the meshless methods
allow us to derive an approximation at any point; thanks to the information provided by
the surrounding nodes. In these approaches the concept of element is thus not used any
more. Connectivity between the nodes is not defined any more by the mesh but only
by the concepts of “vicinity” or “field of influence.” These methods were developed
with the aim of avoiding the numerical problems involved in mesh construction. These
problemshavebeendiscussed inmanystudies; it is, forexample, aquestionofsimulation
of manufacturing processes such as extrusion, injection, or setting forms by removal of
matter where it is necessary to face extremely large distortions of the mesh. In other
processes such as foundry, drilling, or laser welding, precisely knowing the position of
the interfacebetween thesolidphaseandthe liquidphase isessential. In thesimulationof
processes such as cutting by adiabatic shearingwhich involves a localized deformation,
possibly accompanied by the propagation of a fissure, it is necessary to carry out the
simulation without the mesh being conceived influencing the direction of propagation
of the shear band or the fissure. The appearance of a localized deformation requires
a finer representation of the solution in certain areas of the domains, and it is thus
necessary to be able to refine themesh easily without the geometrical constraints known
within the framework of finite elements (mainly in 3D) and the problems related to
precise projection of the fields between the two meshes. The objective of the meshless
methods is to eliminate the structure of themesh and to build the approximation starting
only from the nodes. Although structures with a geometrical character are necessary
(to build node connectivity for the integration of the weak form associated with the
equation to be solved and so on), these do not interfere, in general, with the quality of
the solution and thus can be built independently. Even after being proposed at the end
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of 1970s, the “meshless” methods had to wait approximately 15 years before having a
real development and an interest within the scientific community.

In the interval, little passion had been shown for them because of the numerous
difficulties presented by the first techniques. The first “meshless” method seems to
be the so-called smooth particle hydrodynamics (SPH) method (Lucy 1977), which
was initially used to model astronomical phenomena in unbounded domains. This
method, based on an approximation using the properties of the convolution product,
has two disadvantages: low consistency and difficulty associated with the imposition
of boundary conditions. In 1992, Nayrolles, Touzot and Villon proposed using a
local approximation of least squares in a new method called the “diffuse elements
method” (DEM). In 1994, Belytschko et al. proposed the “element-free Galerkin”
(EFG) method based on the same principles as the preceding one but using “exact”
derivatives of the shape functions. The method known as the “reproducing kernel
particle method” (RKPM) introduced by Liu et al. in 1995 is an extension of the SPH
method but with the reproduction of linear fields or polynomials of higher order being
introduced, thanks to the correction function affecting the kernel function used in
SPH method. Finally, the so-called partition of unity method introduced by Babuska
in about 1996 is a general principle allowing us to enrich any function associated
with a problem involving known physics, within the framework of finite elements
and of meshless methods, by adding additional unknowns in the global system of
equations. Thus, particular functions such as discontinuous functions and singular
functions can be reproduced.

Lastly, more recently, the natural element method (NEM) rests on principles
completely different from the previous ones. Thismethod is halfway betweenmeshless
methods and the finite element method. The NEM proposes an interpolation based
on the concepts of the Voronoi diagram and its natural neighbors. The Voronoi
diagram associated with a cloud of nodes distributed over the domain to be studied
is the Delaunay dual mesh. Thus, a mesh is being used for the construction of the
interpolation. However, as the examples presented in this chapter show, the quality of
interpolation produced does not depend on the form of the triangles (2D problems)
or tetrahedrons (3D problems) present in the Delaunay mesh. The latter is built in a
systematic way without requiring repositioning of nodes. With NEM the choice of
support of shape functions is automatic and optimal in the sense that node vicinity is
taken into account as much as possible to define the interpolation. With regard to
the imposition of boundary conditions, for convex domains, it is direct and proceeds
as the finite elements: the influence of internal nodes on a given domain is cancelled
on the edges of the latter. The NEM cumulates the advantages of meshless methods
and finite element approaches even if, with respect to the latter, a surcharge exists
for the construction of the interpolation.

To extend these characteristics to the non-convex domains two strategies exist. The
first approach based on the alpha forms makes it possible to introduce a description of
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the border in a very flexible way if the latter remains slightly non-convex. In the case
of strongly non-convex fields, the constrained NEM (CNEM) proposes to build the
interpolation on a constrained Voronoi diagram, which is the constrained Delaunay
dual mesh. For the second approach, in addition to the node cloud, a valid description
of the border of the field must be introduced. The Delaunay mesh is constrained with
respect to this border.

The purpose of this text is to describe the technique of natural elements in its
context, i.e. compared to the techniques of finite elements type, which have proved
reliable for many years, but also compared to other techniques with and without
meshes. Both advantages and disadvantages have been listed. This book has been
written with a teaching purpose to be used by both professionals and students at
Master’s level. Many examples have been discussed to illustrate our remarks in order
to show the potentialities of the approach. The majority of these examples will be
from the framework of simulation of methods of working where the application of the
meshless techniques takes all its direction owing to the great material transformations
that seriously compromise the effectiveness of the techniques based on the existence
of a mesh in Lagrangian formulation (or updated Lagrangian).

To better understand the context how the NEM appeared, we will revisit the main
so-called meshless techniques that preceded it, for which these techniques will be
described and discussed briefly and many references will be provided to allow the
reader to further develop their comprehension.

1.1. SPH method

The SPH (Smooth Particle Hydrodynamics) method was introduced for solving
astrophysics models. It is based on an approximation built starting from an integral of
a convolution product

uh(x) =

�
u(y)W (x− y, h)dΩy, [1.1]

where the kernel function has the following properties:

– limh→0



u(y)W (x− y, h)dΩy = u(x);

–


W (x− y, h)dΩy = 1;

–W has a compact support;

–W is decreasing with distance;

–W (x− y, h) ∈ Cp(Rn), p ≥ 1.

The first property expresses that the function core tends toward the Dirac
distribution, which is the limit in which equation [1.1] makes sense. The second
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property ensures zero-order consistency of the approximation. The third ensures
the locality of the approximation and thus after discretization it will lead to a sparse
linear system. The last condition allows us to obtain certain regularity in the resulting
approximation.

One of the most used kernel functions is that using a Gaussian

W (x, h) =
1

(πh2)n/2
exp

�
− x2

h2

	
; [1.2]

even if other kernels are also often used (splines, etc.).

In general, the support of these kernel functions is circular (in 2D) or spherical
(in 3D), but it is also possible to make it ellipsoidal or even rectangular (Figure 1.1)
with the introduction of tensorial products:

W (x− xI) = W (x− xI)W (y − yI). [1.3]

The integral in equation [1.1] can be discretized using a nodal quadrature

uh(x) =
�

I:x∈ΩI

W (x− xI)∆VIuI , [1.4]

with ∆VI the volume associated with each node. The approximation can thus be
rewritten in its more usual form:

uh(x) =
�

I:x∈ΩI

ΦI(x)uI , [1.5]

where the functions ΦI represent the shape functions of the approximation.

The fact of having a poor consistency explains why SPH approximation was
especially used in the discretization of the continuous models (partial differential
equations) in its strong formulation by means of a collocation scheme.

Many difficulties have been listed concerning the use of SPH approximation.
These difficulties justified many works trying to circumvent these difficulties with
more or less success. We can recount some of them: imposition of the essential
boundary conditions (Dirichlet) due to a non-interpolant character of the approximation
(equation [1.5]), i.e. the shape functions associated with the interior nodes, the support
of which has a non-zero intersection with the edge of the field, are not cancelled
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Figure 1.1. Recovery of a 2D field

out on the domain boundary; instabilities observed in the solids subjected to states
of tensile stress that justified the introduction of the “stresses points” among other
solutions; parasitic modes of deformation; and the inconsistency mentioned already.

These problems of inconsistency justified the proposal of corrections of the kernels
for ensuring consistency, a step that led to RKPM.

1.2. RKPMmethod

To simplify the explanation we consider here a unidimensional domain as the
support of the problem to be solved (all the results can be extended to the 2D or
3D case). The points in this domain will be represented by x or s.
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1.2.1. Conditions of reproduction

The approximation uh(x) of u(x) is derived from the convolution product:

uh(x) =

�
Ω

w(x − s, h)u(s)dΩ, [1.6]

where w(x − s, h) is the kernel function and h a parameter that controls the support
of the approximation.

The main idea in the RKPM is to force the approximation to reproduce an
unspecified function. By simplicity we will suppose that the function, which we want
to reproduce exactly, is written as the sum of a polynomial part and non-polynomial
part ue(x):

uh(x) = a0 + a1x+ · · ·+ anx
n + an+1u

e(x). [1.7]

In the following section, we will be discussing regarding the properties that the
kernel function will have to satisfy in order to define an approximation which will be
able to reproduce exactly the function in equation [1.7].

From equation [1.6], the reproduction of a constant function a0 is written as�
Ω

w(x− s, h)a0dΩ = a0, [1.8]

which implies �
Ω

w(x − s, h)dΩ = 1, [1.9]

which is none other than the partition of unity.

The condition to be verified in order to reproduce a linear function ua(x) = a0 +
a1x is expressed in the same way by�

Ω

w(x− s, h)(a0 + a1s)dΩ = a0 + a1x. [1.10]

Using the partition of unity (equation [1.9]), equation [1.10] can be modified to
the form � 


Ω
w(x − s, h)dΩ = 1


Ω
w(x − s, h)sdΩ = x

[1.11]
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implying the linear consistency of the approximation. By repeating procedure, we can
derive the n-order reproduction



Ω w(x − s, h)dΩ = 1

Ω
w(x − s, h)sdΩ = x

...

Ω
w(x − s, h)sndΩ = xn.

[1.12]

Consequently, by rewriting the function present in equation [1.7] we get�
Ω

w(x − s, h)(a0 + a1s+ · · ·+ ans
n + an+1u

e(s))dΩ =

a0 + a1x+ · · ·+ anx
n + an+1u

e(x), [1.13]

from which we deduce



Ω
w(x − s, h)dΩ = 1


Ω
w(x − s, h)sdΩ = x

...

Ω
w(x − s, h)sndΩ = xn


Ωw(x − s, h)ue(s)dΩ = ue(x).

[1.14]

In the original procedure suggested by Liu et al. [LIU 95], only polynomial
consistency of degree n was imposed. However, this procedure cannot be directly
generalized to impose the reproduction of a generic non-polynomial function ue(x).

1.2.2. Correction of the kernel

We will represent by ur(x) the function of approximation verifying the conditions
stated in the system of equations [1.14]. Normally, the kernel function is taken in
the form of a cubic spline function, and consequently, the equations [1.14] are not
satisfied. Liu et al. [LIU 95] proposed the introduction of a correction function
C(x, x− s) to satisfy all the conditions of reproduction. In our case, where we want
to reproduce any polynomial or non-polynomial function also, we will consider the
more general form C(x, s, x − s), the relevance of which will be discussed later.
Thus, ur(x) can be expressed by [TRU 05]:

ur(x) =

�
Ω

C(x, s, x − s)w(x − s, h)u(s)dΩ, [1.15]
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where C(x, s, x− s) is sought in the form

C(x, s, x − s) = HT (x, s, x− s)b(x), [1.16]

where HT (x, s, x − s) represents the vector containing the functions considered in
the approximation basis and b(x) is another vector whose components are unknown
functions that will be determined to verify the conditions of reproduction. Thus,
equation [1.14] can be rewritten as:



ΩHT (x, s, x− s)b(x)w(x − s, h)dΩ = 1

Ω
HT (x, s, x− s)b(x)w(x − s, h)sdΩ = x

...

ΩHT (x, s, x− s)b(x)w(x − s, h)sndΩ = xn

Ω
HT (x, s, x− s)b(x)w(x − s, h)ue(s)dΩ = ue(x).

[1.17]

In fact, the conditions of reproduction must be imposed in discrete form. To do
so, we will considerN points (also called nodes) allowing us to calculate the discrete
form of equation [1.17]:

�N
i=1 H

T (x, xi, x− xi)b(x)w(x − xi, h)∆xi = 1�N
i=1 H

T (x, xi, x− xi)b(x)w(x − xi, h)xi∆xi = x
...�N

i=1 H
T (x, xi, x− xi)b(x)w(x − xi, h)x

n
i ∆xi = xn�N

i=1 H
T (x, xi, x− xi)b(x)w(x − xi, h)u

e(xi)∆xi = ue(x),

[1.18]

whose matrix form is

�
N�
i=1

R(xi)H
T (x, xi, x− xi)w(x − xi, h)∆xi



b(x) = R(x), [1.19]

whereR(x) represents the vector of reproduction,

RT (x) = [1, x, . . . , xn, ue(x)] . [1.20]

Equation [1.19] enables us to calculate the vector b(x),

b(x) = M(x)−1R(x), [1.21]
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where the so-called moment matrixM(x) is defined by:

M(x) =
N�
i=1

R(xi)H
T (x, xi, x− xi)w(x − xi, h)∆xi. [1.22]

This matrix differs slightly from that obtained in [LIU 95].

1.2.3. Discrete form of the approximation

The discrete form ur(x) of uh(x) is obtained from equations [1.15], [1.16] and
[1.21]:

ur(x) ∼=
N�
i=1

HT (x, xi, x− xi)M(x)−1R(x)w(x − xi, h)u(xi)∆xi

=

N�
i=1

ψi(x)ui, [1.23]

where ψi is the shape function associated with the enriched RKPM approximation:

ψi(x) = HT (x, xi, x− xi)M(x)−1R(x)w(x − xi, h)∆xi. [1.24]

As in the most standard version of the RKPM, we take∆xi = 1. Although various
quadratures exist, the choice of the quadrature does not affect the precision of the
constructed approximation.

If this method allows us to overcome a certain number of difficulties present in
the SPH method, the difficulty related to the imposition of the essential boundary
conditions remains untouched. The gain on the side of consistency allowed the use of
RKPM approximations within the framework of discretizations of the weak (often
variational) formulations of partial differential equations. Although this possibility
of working on weak formulations seems to be a positive point, it hides a new
difficulty associated with the integration of the weak forms. Integration requires a
decomposition of the domain and use of a suitable quadrature formula. Moreover, in
certain cases, the non-polynomial character of the resulting shape functions makes
this integration delicate. This subject has also motivated many studies.

It is possible to prove that the RKPM, which we have just described briefly, is
completely equivalent to another family of methods. These methods will be described
later and are based on the use of approximations making use of the moving least
squares (MLS).
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1.3. MLS based approximations

We now will consider the approximation:

uh(x) = pT (x)a(x), [1.25]

with pT (x) a polynomial base. For example, pT (x) = [1, x, y, xy] and pT (x) =
[1, x, y, xy, x2, y2], respectively, represent a linear and quadratic base in the 2D case
and a(x) represents a vector with unknown coefficients. To determine a(x), we will
define the functional calculus J which will have to be minimized with respect to a(x)
[NAY 92]:

J =
1

2

n�
i=1

wi(x)
�
pT (xi)a(x) − ui

�2
, [1.26]

where ui are the nodal unknown associated with nodes xi neighboring points of x and
wi(x) is a weight function whose value decreases with the distance between xi and x
(refer to [BEL 98a] to understand the main properties of this function as well as the
most used weight functions). The minimization of J with respect to the coefficients
aj(x) led to:

∂J

∂aj(x)
=

n�
k=1

ak

�
n�

i=1

wi(x)pj(xi)pk(xi)



−

n�
i=1

wi(x)pj(xi)ui = 0, [1.27]

which led to the linear system:

A(x)a(x) = B(x)u, [1.28]

where the matricesA(x) andB(x) are defined by:

Ajk(x) =

n�
i=1

wi(x)pj(xi)pk(xi), [1.29]

Bij(x) = wi(x)pj(xi). [1.30]

While replacing a(x) in equation [1.25], we obtain:

uh(x) = pT (x)A−1(x)B(x)u, [1.31]
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from which we can identify the shape functions of the approximation:

ψT (x) = pT (x)A−1(x)B(x). [1.32]

The only difference between the diffuse approximation and approximation used
in the technique known as EFG resides in the evaluation of derivatives of the shape
functions. In the first technique, only the functions of the approximation base
contained in vector pT (x) in equation [1.32] are derived, while in the second all
the terms depending on x are there. It amounts to the saying that not only are the
derivatives of the functions contained in the base of approximation considered but
also the derivatives of the coefficients aj(x) present in the approximation.

1.4. Final note

Although we have summarized only the most known methods here, there exist
various techniques which can be listed as pertaining to the family of meshless
techniques. Since many works and articles in specialized papers have been devoted
to these techniques, we do not want to expand on them further. We will quote simply
some other techniques: generalized finite differences, the “h-p clouds;” finite sphere
methods; and the methods based on the partition of unity such as the generalized finite
elements or even the extended finite elements (X-FEM) methods which, although
based on the finite element method, succeed in freeing themselves from certain
difficulties related to the management of interfaces or discontinuities, fixed or moving
without calling on the traditional remeshing techniques.




