Preface

It is a common scheme in many sciences to study systems or signals by looking for
characteristic scales in time or space. These are then used as references for expressing
all measured quantities. Physicists may for instance employ the size of a structure,
while signal processors are often interested in correlation lengths: (blocks of) samples
whose distance is several times the correlation lengths are considered statistically
independent. The concept of scale invariance may be considered to be the converse
of this approach: it means that there is no characteristic scale in the system. In other
words, all scales contribute to the observed phenomenon. This “non-property” is also
loosely referred to as scaling law or scaling behavior. Note that we may reverse the
perspective and consider scale invariance as the signature of a strong organization in
the system. Indeed, it is well known in physics that invariance laws are associated with
fundamental properties. It is remarkable that phenomena where scaling laws have been
observed cover a wide range of fields, both in natural and artificial systems. In the first
category, these include for instance hydrology, in relation to the variability of water
levels, hydrodynamics and the study of turbulence, statistical physics with the study
of long-range interactions, electronics with the so-called 1/ f noise in semiconductors,
geophysics with the distribution of faults, biology, physiology and the variability of
human body rhythms such as the heart rate. In the second category, we may mention
geography with the distribution of population in cities or in continents, Internet traffic
and financial markets.

From a signal processing perspective, the aim is then to study transfer mechanisms
between scales (also called “cascades”) rather than to identify relevant scales. We are
thus led to forget about scale-based models (such as Markov models), and to focus on
models allowing us to study correspondences between many scales. The central notion
behind scaling laws is that of self-similarity. Loosely speaking, this means that each
part is (statistically) the same as the whole object. In particular, information gathered
from observing the data should be independent of the scale of observation.
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There is considerable variety in observed self-similar behaviors. They may for
instance appear through scaling laws in the Fourier domain, either at all frequencies
or in a finite but large range of frequencies, or even in the limit of high or low
frequencies. In many cases, studying second-order quantities such as spectra will
prove insufficient for describing scaling laws. Higher-order moments are then
necessary. More generally, the fundamental model of self-similarity has to be adapted
in many settings, and to be generalized in various directions, so that it becomes
useful in real-world situations. These include self-similar stochastic processes, 1/ f
processes, long memory processes, multifractal and multifractional processes, locally
self-similar processes and more. Multifractal analysis, in particular, has developed as
a method allowing us to study complex objects which are not necessarily “fractal”,
by describing the variations of local regularity. The recent change of paradigm
consisting of using fractal methods rather than studying fractal objects is one of the
reasons for the success of the domain in applications.

We are delighted to invite our reader for a promenade in the realm of scaling laws,
its mathematical models and its real-world manifestations. The 14 chapters have all
been written by experts. The first four chapters deal with the general mathematical
tools allowing us to measure fractional dimensions, local regularity and scaling in
its various disguises. Wavelets play a particular role for this purpose, and their role
is emphasized. Chapters 5 and 6 describe advanced stochastic models relevant in
our area. Chapter 7 deals with fractional calculus, and Chapter 8 explains how to
synthesize certain fractal models. Chapter 9 gives a general introduction to IFS, a
powerful tool for building and describing fractals and other complex objects, while
Chapter 10, of applied nature, considers the application of IFS to image compression.
The four remaining chapters also deal with applications: various signal and image
processing tasks are considered in Chapter 11. Chapter 12 deals with Internet traffic,
and Chapter 13 with financial data analysis. Finally, Chapter 14 describes a fractal
space-time in the frame of cosmology.

It is a great pleasure for us to thank all the authors of this volume for the quality
of their contribution. We believe they have succeeded in exposing advanced concepts
with great pedagogy.



