

Chapter 3

First Formulations

3.1. Minimal version

3.1.1. Swarm size

Let us recall that for the moment the size of the swarm is fixed once for all.
Intuitively, we feel of course that, the more particles, the faster the search will be in
terms of the number of iterations. But, this iteration count is not really a relevant
criterion. Rather, what counts is the number of times that the function to be
minimized must be evaluated, because in the majority of real problems, this
evaluation requires a considerable time. And, obviously, for an iteration, the number
of evaluations is equal to the number of particles. Therefore, if we want to reduce
the total number of evaluations needed to find a solution, we are tempted to decrease
the size of the swarm. But too small a swarm is likely to take longer to find a
solution or even not to find it at all.

 In short, a compromise must be reached. Empirically, the experimenters
proposed sizes of about 20 to 30 particles, which, indeed, proved entirely sufficient
to solve almost all classic test problems. Note how small this value is, compared
with those usually used, for example in the genetic algorithms (GA), a fact which
does not facilitate comparisons. Those who are for GA say “Since I use 100 genes in
my algorithms, I will take 100 particles for a comparison with PSO”. At once,
obviously, they find that PSO, although finding a solution at least as often as the
genetic algorithms, is not very effective in terms of number of evaluations, since this
number of particles is rather too large and there is no selection. Conversely, if those
who are for PSO use GA with only 20 genes, they will observe that the algorithm
finds the solution less often, which is quite normal as well. In fact, and we will

38 Particle Swarm Optimization

return to this later, like any algorithm, PSO has its “field of competence”, its
“ecological niche”, where it turns out to be the best choice [EBE 98, GUD 03, JEN
96, SET 03].

 In the examples below we will systematically use a swarm of 20 particles,
eventually showing that even this small number is sometimes larger than necessary.
But we will also see later, in the chapter on performance maps, that a slightly greater
number is more comfortable, in the sense that for a wide range of test problems it
increases the average probability of success. Anyway, we must now make a move
through the search space, first by defining their initial positions and velocities, then
by specifying the equations of motion.

3.1.2. Information links

The information links are redefined randomly with each iteration: each particle
informs K others chosen randomly. We note that it means that the group of
informants corresponding to a particle has an average size slightly less than K,
owing to the fact that the same information receiver can be selected several times. In
the same way, it means that the average size of the groups of informants is also
slightly less than K, though that is a little less obvious. The exact formula and the
manner of finding it are given at the end of the chapter, for the benefit of
mathematical amateurs.

 It is enough for us here simply to note that the smaller the swarm, the lower the
average number of informants of a given particle in respect of K. For example, for a
swarm of 20 particles, with K = 3 one finds that the average size of the group of
informants is 2.85, whereas it is 2.71 for a swarm of 10 particles.

 This is relevant when one decreases the size of the swarm in the hope of
reducing the total number of evaluations needed to achieve the goal. With fewer
particles, the swarm is certainly a little less ready to explore the search space, but
there is a kind of automatic partial offsetting by the correlative reduction of the
average size of the groups of informants. As we have seen and will examine further,
this reduction actually encourages exploration by increasing diversity.

3.1.3. Initialization

Note that, for the moment, we are interested only in continuous problems with
real variables. A search space is defined, for example, classically, like one
(hyper)cube of the form [xmin, xmax]D. We will see, in Chapter 12, how it is possible to
define much more general search spaces (with discrete variables and more complex
forms) without changing the guiding principles of the method.

First Formulations 39

Initialization simply consists of initially randomly placing the particles according
to a uniform distribution in this search space. This is a stage that one finds in
virtually all the algorithms of stochastic iterative optimization.

 But here, moreover, the particles have velocities. By definition, a velocity is a
vector or, more precisely, an operator, which, applied to a position, will give another
position. It is in fact a displacement, called velocity because the time increment of
the iterations is always implicitly regarded as equal to 1.

 In practice, it is not desirable that too many particles tend to leave the search
space as early as the first increment, or for that matter later. We will see below what
occurs in this case, but, for the moment, let us be satisfied with deriving at random
the values of the components of each velocity, according to a uniform distribution
in:

() ()min max max min2, 2x x x x− −⎡ ⎤⎣ ⎦

3.1.4. Equations of motion

The dimension of the search space is D. Therefore, the current position of a
particle in this space at the moment t is given by a vector x(t), with D components.
Its current velocity is v(t). The best position found up to now by this particle is given
by a vector p(t). Lastly, the best position found by informants of the particle is
indicated by a vector g(t). In general, we will write simply x, v, p, and g. The dth

component of one of these vectors is indicated by the index d, for example xd. With
these notations, the equations of motion of a particle are, for each dimension d:

() ()1 2 3d d d d d d

d d d

v c v c p x c g x
x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 [3.1]

The confidence coefficients are defined in the following way:
 – c1 is constant (confidence in its own movement);
 – c2 and c3 (respectively confidence in its best performance and that of its best

informant) are randomly selected with each step of time according to a uniform
distribution in a given interval [0, cmax].

This is why equation [3.1] can be rewritten in a more explicit way, by
highlighting the random elements:

()() ()()1 max max0,1 0,1d d d d d d

d d d

v c v c alea p x c alea g x
x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 [3.2]

40 Particle Swarm Optimization

To use this model, the two parameters c1 and cmax must be defined. The latter can
be regarded as the maximum confidence granted by the particle to any performance
transmitted by another. For each problem, “the right” values can be found only by
experiment, with the help, however, of two empirical rules, made available after
many tests.

 The first rule stipulates that c1 must have an absolute value less than 1. It is
understood intuitively if one considers what occurs in the course of several
successive time increments, in the specific case where the particle is and remains
itself its best informant. We then have pd = xd = gd and, with each increment,
velocity is simply multiplied by c1. If its absolute value is greater than 1, velocity
increases unceasingly and convergence is impossible. Note that, in theory, nothing
prevents this coefficient being negative, the behavior obtained being strongly
oscillatory, but this is never the case in traditional PSO. So, we will assume it to be
positive.

 In practice, this coefficient should be neither too small, which induces a
premature convergence, nor too large, which, on the contrary, can slow down
convergence excessively. The authors of the first work on PSO recommended that it
be equalized to 0.7 or 0.8.

 The second rule states simply that the parameter cmax should not be too large, a
value of about 1.5 to 1.7 being regarded as effective in the majority of cases. When
it was originally stated, this rule did not have a justification, even an intuitive one. It
was purely experimental.

 In fact, the recommended values are very close to those deduced later from
mathematical analyses showing that for a good convergence the values from c1 and
cmax should not be independently selected [CLE 02, TRE 03, VAN 02]. For example,
the pairs of values (0.7 1.47) and (0.8 1.62) are indeed correct. The first
experimenters, James Kennedy and Russel Eberhart, with the possible addition of
Yuhui Shi [SHI 9a], did good work! The existence of this relation between these two
parameters will help us later establish performance maps in only two variables: a
parameter ϕ and the size of the swarm.

3.1.5. Interval confinement

During the first experiments of PSO, the test functions used were defined for all
values. For example, the function:

() 2

1

D

d
d

f x x
=

= ∑

First Formulations 41

(historically called Sphere, but which is in fact a paraboloid) in any point of real
space RD

 can be calculated. During the evolution of the swarm, it may have
happened that a particle left the search space as initially defined, but that was of no
importance, since the value of its position could in fact still be calculated without
“crashing” the data-processing program. Nevertheless, obviously, that is not always
the case. For example, in the majority of programming languages and with the
majority of compilers, the evaluation of a function such as:

()
1

D

d
d

f x x
=

= ∑

returns an error message as soon as one of the coordinates xd is negative.

More generally, a number of functions have a space of definition that is not
infinite. Consequently, it was necessary to add very quickly a mechanism to prevent
a particle leaving the search space. The simplest is the interval confinement. Let us
always assume, for the sake of simplicity, that the search space is [xmin, xmax]

D
. Then

this mechanism stipulates that, if a coordinate xd calculated according to equations
of motion [3.2] leaves the interval [xmin, xmax], one allots to it the nearest value of the
border point. In practice, therefore, it amounts to replacing the second line of [3.2]
by:

()()min max, ,d d dx MIN MAX x v x x← + [3.3]

However, this simple form, while giving correct results, has a disadvantage.
Indeed, we are in a scenario where the proper velocity of the particle tends to make
it leave the search space. Confinement [3.3] certainly brings back the particle to the
border of the search space, but does not change its velocity. This is calculated again
and thus in general is modified next time, but it is not uncommon for it to remain
oriented more or less in the same direction. Thus the particle will tend to cross the
border again, be brought back to that point by confinement, and so on. In practice, it
will be as though it “were stuck” to this border.

That is why one must supplement the mechanism of confinement with a velocity
modification. One can replace the component that poses a problem by its opposite,
possibly balanced by a coefficient less than 1, or one can simply cancel it. If
cancellation is chosen, the complete mechanism is then described by the following
operations:

[]min max min min

max max

0
,

d

d d d

d d

v
x x x x x x x

x x x x

←⎧
⎪∉ ⇒ < ⇒ ←⎨
⎪ > ⇒ ←⎩

 [3.4]

42 Particle Swarm Optimization

The adaptation is immediate in case the intervals defining the search space are
different for each dimension. But what is to be retained above all is the very
principle of confinement, which stipulates that “if a particle tends to leave the search
space, then bring it back to the nearest point in this space and consequently modify
its velocity”. We will see in particular that this principle can be used to define
confinements necessary to problems in non-null granularity (positions with integer
values, for example) or to problems (typically combinatorial) whose solutions must
have all coordinates different.

3.1.6. Proximity distributions

What is the consequence of introducing random coefficients into
equations of motion? For a better understanding, let us consider all
the possible displacements obtained while varying independently c2 and c3 between 0
and cmax. Let us call p% the vector whose dth component is:

()()max0, d dalea c p x−

and g% the one whose dth component is:

()()max0, d dalea c g x−

It is easy to see that if one places the origin of p% (respectively g%) in x, its end
then traverses a D-parallelepiped whose two opposite tops are x and cmaxp
(respectively cmaxg). This D-parallelepiped is called the proximity of p (respectively
g). It is an example of formalization of what we described in the preceding chapter
by using the expression “towards . . .”.

The distribution of the possible points in the proximities of p and g is uniform.
On the other hand, the distribution of the new possible positions for the particle,
even if its field is also a hyperparallelepid, is not itself uniform.
Indeed, for a given dimension d, the random variable whose occurrence is the dth
component of the new

velocity is the sum of two random variables having each one

a density of constant probability on an interval. To clarify these ideas, let us suppose
that one has d dp g< and 0dv = . Then the probability density of the sum of these
two variables has a trapezoidal form. It increases linearly on []max0, dc p , from 0
to d dp g , preserves this last value in the interval [cmaxpd, cmaxgd] then decreases
linearly to 0 on the interval [cmaxgd, cmax (pd + gd)]. The resulting distribution thus
makes it a “truncated pyramid”, whose center is at the point

() ()()2,2 22max11max gpcgpc ++ . It is uniform on a rectangle and decreases

First Formulations 43

linearly beyond the edges of this rectangle. Figure 3.1 shows a sample of 1,000
points in the proximity of p, 1,000 points in that of g and 1,000 next possible
positions which result from this by linear combination.

Figure 3.1. Example of proximities in two dimensions. The proximity of p (the best position
found up to now by particle x) is a rectangle of which one of the tops is x and the other

 cmax(p – x) and the distribution of possibilities is uniform there. Similarly for g
 (the best position found by informants of x). By linear combination, one obtains

 the next possible positions of the particle. Their envelope is also a rectangle,
 but the distribution is not uniform there (less dense on the edges). To clarify
the Figure, the velocity of the particle was assumed to be null and for each

distribution only a sample of 1,000 points was represented

Let us emphasize this concept of the distribution of the next possible positions
or, briefly, the distribution of the possibles. This is the basis of all the algorithms of
iterative optimization calling for randomness (stochastic). With each time increment,
certain positions are known and starting from this information, it is a question of
choosing the next position(s) for it (or them). Whatever the method used to work out
the answer, the result is always of the same type: a set of candidate positions, each
one being assigned a probability of being selected.

This is why it is so important, for any method of this type, to examine carefully
the distributions obtained with each increment and to ask whether they can be made
more effective. For PSO, we will see that this step easily induces interesting
improvements. A contrario, let us quickly mention two rather common errors that
impoverish the distributions of the possibles.

Towards p

Towards g

New possible
positions

p

x

g

44 Particle Swarm Optimization

3.2. Two common errors

The equations of motion [3.2] are sometimes written in vectorial form:

()() ()()1 max max0, 0,v c v alea c p x alea c g x
x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 [3.5]

In this case, in accordance with the definition of the multiplication of a vector by
a coefficient, it means that all the components, for example vector p – x, are multiplied
by the same random number. This is an error in the sense that it corresponds to an
algorithm different from that of PSO, but we can also regard this form as an
alternative. It should, however, be noted that the best parameter settings for c1 and
cmax bypass the use of a constriction coefficient (see Chapter 6) and that this
alternative is then much less effective than the classic form.

The proximity of p (respectively g) is a simple segment here and the distribution
of possibles for the next displacement is a D-parallelepiped located “between” p and
g (these two points are on its surface), which restricts exploration, in particular
because an entire set of points located close to p (respectively g) has no chance of
being selected.

 The other error, or alternative, consists of carrying out a factorization in the first
equation of motion:

()()1 max0, 2d d d d dv c v alea c p g x← + + − [3.6]

or:

()1 max0, 2
2

d d
d d d

p g
v c v alea c x

+⎛ ⎞← + −⎜ ⎟
⎝ ⎠

 [3.7]

In this form, we see that the next position will then be taken randomly according
to a uniform distribution in a hyperparallelepid whose edge for dimension d is length

max d dc p g+ and whose center is found by adding to vector x the vector

()1 max 2c v c p g+ + . Actually, one could simply describe this as an alternative rather
than an error, because this distribution is almost as rich as the original.

First Formulations 45

3.3. Principal drawbacks of this formulation

The repeated experiments using the version of PSO defined by equations [3.2]
and [3.4] (the version that, for brevity, we will name OEP 0) highlight certain
insufficiencies or anomalies that can also be seen as ideas for improvements in
subsequent versions.

3.3.1. Distribution bias

We saw that, with each time increment and for each particle, the distribution of
possibles is non-uniform and of (hyper-)rectangular envelope. In itself, it would not
be a defect if it corresponded at least to an empirical rule, aiming, for example, to
favor a certain area of the search space. For example, one might think of searching
“preferentially” around one of the two best-known positions of the particle (p and g)
or “around” a point located between p and g, but closer to g than p, etc.

However, this is not the case. There is no reason why the median point of the
distribution obtained should be at the center of a “promising” area. Actually, the
very particular form of this distribution is an artifact resulting only from the simple
choice of coding of random elements. Since the majority of data-processing
languages have only the function alea (0,1), one immediately has alea (0, cmax) = cmax
alea (0,1). However, coding a distribution of different envelope (spherical, for
example) is appreciably more difficult, at least if the computing time is not to
increase exponentially with the number of dimensions. We will see examples of this
later.

 Moreover, it should be noted that this distribution depends on the coordinate
system (see Figures 3.2 and 3.3). If by bad luck the point p is on a coordinate axis,
the D-rectangle of its proximity loses a dimension. For a problem with two
dimensions, for example, it is reduced to a segment. A simple rotation of the
coordinate system completely modifies the whole ensemble of next possible
positions and thus strongly influences the behavior of the particles. Convergence is
as likely to be accelerated as slowed down, but, again, in an unforeseeable way.

 This phenomenon is often concealed, because the majority of traditional test
functions are symmetrical around the origin of the coordinates.

46 Particle Swarm Optimization

Figure 3.2. Distribution of the next possible positions. The upper diagram shows each of the
two elementary distributions and the lower their combination (sample of 1,000 points)

-4
-3
-2
-1
0
1
2
3
4

0 2 4 6 8

Best perf. proximity
Best local perf. proximity
Present position

Best performance
Best local performance

-4
-3
-2
-1
0
1
2
3
4

0 2 4 6 8

Possibilities

Present position

Best performance

Best local perf.

First Formulations 47

-4
-3
-2
-1
0
1
2
3
4

0 2 4 6 8

Best perf. proximity
Best local perf. proximity
Present position
Best performance
Best local perf.

-4
-3
-2
-1
0
1
2
3
4

0 2 4 6 8

Possibilities
Present position
Best performance
Best local perf.

Figure 3.3. Depending on the coordinate system chosen, the distribution of the next possible
positions can be very variable. Here, a rotation of the coordinate axes was carried out, one of

the axes practically aligning itself on the vector g − x

The second bias led to alternatives privileging distributions with a center of
symmetry (spheres, Gaussian, etc.) or whose form depends only on the respective
positions x, p, and g (Gaussian “distorted”). To mitigate the first bias at the same
time, these distributions are placed in a way that is a priori wiser. For example, by
centering them on the segment p − g and a little closer to g than p, one can hope to
take advantage of a possible favorable “gradient effect” from p towards g.

48 Particle Swarm Optimization

3.3.2. Explosion and maximum velocity

If one does not want to subject oneself to a parameter c1 less than 1, to support
exploration, then it is necessary to face the phenomenon of the “explosion” of the
swarm. Indeed, roughly speaking, as we saw, with each time increment velocity is
multiplied by c1. If this coefficient is greater than 1, then it will tend to increase
more and more. That is why certain authors introduce an additional parameter, in the
form of a maximum velocity: any velocity tending to exceed it is brought back to it.
This maximum velocity vmax is a real number, which can be different for each
dimension. An empirical rule requires that, for a given dimension, one takes it to be
equal to half the range of possible values for the search space. Any larger value
would ensure that the particles are made to leave the search space too often.

For example, if for a dimension d the search space is the interval [0.5], one will
take a maximum velocity of 2.5 for this dimension. It means that if the first
calculation of equation [3.2] gives a velocity vd greater than 2.5, one will take it
instead to equal 2.5. If the values are discrete, for example{ }0,1,...,5 , the greatest
extent covered by the possible values remains from 0 to 10, but the maximum
velocity could be selected as being 2 or 3.

Unfortunately, whoever says “additional parameter” says also “choice of this
parameter”, which still complicates the task of the user a little, since, in OEP 0, all
the parameters are up to him.

3.4. Manual parameter setting

Table 3.1 recapitulates the various parameters of the model which have to be
defined and the few empirical rules which could be worked out to guide the choice.
These rules are very approximate and, for a given problem, we are faced with the
strong possibility of searching at length before finding a “good” set of parameters.
The good news, nevertheless, is that PSO is very robust, in the sense that broad
variations in the parameters do not prevent convergence, even if, of course, it can be
more or less rapid.

In this respect, in the majority of the problems, the informant group size is the
parameter to which the behavior of the swarm is the least sensitive. One can take it
systematically equal to 3 without much risk. Even if this is not the best value for
your precise problem, the performances, in general, are not seriously degraded as a
result. Nevertheless, if you are sure that the function to be minimized does not
present local minima, you will probably find it beneficial to increase this value, to
even consider that each particle informs all the others and thus to take it equal to N.

First Formulations 49

Parameter Title and nature Empirical rule of choice and comment

c1
Self-confidence; real

number In]0,1[. Suggestion: 0.7

cmax
Confidence in others;

real number About 1.5. Suggestion: 1.43

N Swarm size; integer From 20 to 40. Suggestion: 20

K Group size of informed;
integer

From 3 to 5. To N for the simple problems
without local minima. Suggestion: 3

vmax
Maximum velocity; real

number

Essential only if c1 is greater than 1. Value about
half of xmax − xmin. Possibly different

for each dimension.

Table 3.1. Parameters of OEP 0. The fifth, maximum velocity, is useful only if one wants to
force a greater exploration of the search space by balancing velocity by a

“self-confidence” greater than 1

The number of evaluations of the function to be minimized is equal, with each
time increment, to the number of particles. Consequently, the degradation of the
performances according to this criterion is at most proportional to the size of the
swarm. Actually it is often much less, since the increase in the number of particles
also increases the probability of finding a solution more quickly. That is why the
recommended values 20 to 40 are very generally satisfactory.

For the two parameters of confidence, precise values are suggested. As indicated
previously, they form a pair initially found in experiments but subsequently
confirmed mathematically. Other values are naturally possible and it is even
possible, by choosing them judiciously, more or less to induce a given behavior of
the particles, in particular oscillating or not around a solution [TRE 03, VAN 02].

3.5. For “amatheurs”: average number of informants

One supposes that each particle of a swarm of total size N randomly chooses,
with putting back, K particles to be informed. The probability that a particle is not
selected is ()1 1 Kp N= − and the probability that it is selected is 1q p= − .

Let s be the number of informants of a given particle. The probability that s is
null is the probability that it is chosen by nobody, i.e. neither by particle 1, nor by
particle 2 . . . nor by particle N. This probability is thus Np .

 In the same way, for s to equal 1, it must be chosen by one particle (N
possibilities) and not chosen by all the others. Its probability is thus 1NNp q− . More

50 Particle Swarm Optimization

generally, for an unspecified value of s between 0 and N, the probability
is s N s s

NC p q− , where s
NC is the number of combinations of s elements among N.

 Thus, finally, by taking the sum of the possible values weighted according to

their probability, the average value of the number of informants is:

() () ()()
0 0

1 1 1 1 1
sN N K N s Ks N s s s

N N
s s

sC p q sC N N−−

= =
= − − −∑ ∑

From a graph theory point of view, it is the average number of ancestors by node
when, in a graph of size N, the arcs are built by randomly taking K downward for
each node. Figure 3.4 shows, for K = 3, the evolution of this value according to N.

Figure 3.4. Average number of informants by particle when each particle informs K
others at random, according to the size of the swarm.

Here K = 3. This number is all the less than K as the swarm is small

3.6. Summary

From the basic principles presented in the preceding chapter, we propose a first
simple formulation, called OEP 0, which specifies the rules of displacement of the
particles. The information links between particles are randomly selected with each
iteration. The equations of motion combine linearly, thanks to confidence
coefficients, vectors of position randomly drawn according to non-uniform
distributions whose supports are (hyper-)rectangles in the search space.

 The various parameters (size of the swarm, coefficients, number of informed
particles chosen at random, etc.) depend entirely upon the user for the moment and
some semi-empirical rules are given to guide these choices.

 Certain insufficiencies of this first version are noted here. Highlighting them
will guide the improvements brought about later on.

2.65
2.7

2.75
2.8

2.85
2.9

2.95
3

0 20 40 60 80 100 120

Size of the swarm

A
ve

ra
ge

 n
b

of
 in

fo
rm

an
ts

K=3

