
 

Chapter 3 

First Formulations 

3.1. Minimal version 

3.1.1. Swarm size 

Let us recall that for the moment the size of the swarm is fixed once for all. 
Intuitively, we feel of course that, the more particles, the faster the search will be in 
terms of the number of iterations. But, this iteration count is not really a relevant 
criterion. Rather, what counts is the number of times that the function to be 
minimized must be evaluated, because in the majority of real problems, this 
evaluation requires a considerable time. And, obviously, for an iteration, the number 
of evaluations is equal to the number of particles. Therefore, if we want to reduce 
the total number of evaluations needed to find a solution, we are tempted to decrease 
the size of the swarm. But too small a swarm is likely to take longer to find a 
solution or even not to find it at all. 

 In short, a compromise must be reached. Empirically, the experimenters 
proposed sizes of about 20 to 30 particles, which, indeed, proved entirely sufficient 
to solve almost all classic test problems. Note how small this value is, compared 
with those usually used, for example in the genetic algorithms (GA), a fact which 
does not facilitate comparisons. Those who are for GA say “Since I use 100 genes in 
my algorithms, I will take 100 particles for a comparison with PSO”. At once, 
obviously, they find that PSO, although finding a solution at least as often as the 
genetic algorithms, is not very effective in terms of number of evaluations, since this 
number of particles is rather too large and there is no selection. Conversely, if those 
who are for PSO use GA with only 20 genes, they will observe that the algorithm 
finds the solution less often, which is quite normal as well. In fact, and we will 
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return to this later, like any algorithm, PSO has its “field of competence”, its 
“ecological niche”, where it turns out to be the best choice [EBE 98, GUD 03, JEN 
96, SET 03].  

 In the examples below we will systematically use a swarm of 20 particles, 
eventually showing that even this small number is sometimes larger than necessary. 
But we will also see later, in the chapter on performance maps, that a slightly greater 
number is more comfortable, in the sense that for a wide range of test problems it 
increases the average probability of success. Anyway, we must now make a move 
through the search space, first by defining their initial positions and velocities, then 
by specifying the equations of motion. 

3.1.2. Information links 

The information links are redefined randomly with each iteration: each particle 
informs K others chosen randomly. We note that it means that the group of 
informants corresponding to a particle has an average size slightly less than K, 
owing to the fact that the same information receiver can be selected several times. In 
the same way, it means that the average size of the groups of informants is also 
slightly less than K, though that is a little less obvious. The exact formula and the 
manner of finding it are given at the end of the chapter, for the benefit of 
mathematical amateurs. 

 It is enough for us here simply to note that the smaller the swarm, the lower the 
average number of informants of a given particle in respect of K. For example, for a 
swarm of 20 particles, with K = 3 one finds that the average size of the group of 
informants is 2.85, whereas it is 2.71 for a swarm of 10 particles. 

 This is relevant when one decreases the size of the swarm in the hope of 
reducing the total number of evaluations needed to achieve the goal. With fewer 
particles, the swarm is certainly a little less ready to explore the search space, but 
there is a kind of automatic partial offsetting by the correlative reduction of the 
average size of the groups of informants. As we have seen and will examine further, 
this reduction actually encourages exploration by increasing diversity. 

3.1.3. Initialization 

Note that, for the moment, we are interested only in continuous problems with 
real variables. A search space is defined, for example, classically, like one 
(hyper)cube of the form [xmin, xmax]D. We will see, in Chapter 12, how it is possible to 
define much more general search spaces (with discrete variables and more complex 
forms) without changing the guiding principles of the method. 
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Initialization simply consists of initially randomly placing the particles according 
to a uniform distribution in this search space. This is a stage that one finds in 
virtually all the algorithms of stochastic iterative optimization.  

 But here, moreover, the particles have velocities. By definition, a velocity is a 
vector or, more precisely, an operator, which, applied to a position, will give another 
position. It is in fact a displacement, called velocity because the time increment of 
the iterations is always implicitly regarded as equal to 1. 

 In practice, it is not desirable that too many particles tend to leave the search 
space as early as the first increment, or for that matter later. We will see below what 
occurs in this case, but, for the moment, let us be satisfied with deriving at random 
the values of the components of each velocity, according to a uniform distribution 
in: 

( ) ( )min max max min2, 2x x x x− −⎡ ⎤⎣ ⎦  

3.1.4. Equations of motion 

The dimension of the search space is D. Therefore, the current position of a 
particle in this space at the moment t is given by a vector x(t), with D components. 
Its current velocity is v(t). The best position found up to now by this particle is given 
by a vector p(t). Lastly, the best position found by informants of the particle is 
indicated by a vector g(t). In general, we will write simply x, v, p, and g. The dth 

component of one of these vectors is indicated by the index d, for example xd. With 
these notations, the equations of motion of a particle are, for each dimension d: 

( ) ( )1 2 3d d d d d d

d d d

v c v c p x c g x
x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 [3.1] 

The confidence coefficients are defined in the following way: 
 – c1 is constant (confidence in its own movement); 
 – c2 and c3 (respectively confidence in its best performance and that of its best 

informant) are randomly selected with each step of time according to a uniform 
distribution in a given interval [0, cmax]. 

This is why equation [3.1] can be rewritten in a more explicit way, by 
highlighting the random elements: 

( )( ) ( )( )1 max max0,1 0,1d d d d d d

d d d

v c v c alea p x c alea g x
x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 [3.2] 
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To use this model, the two parameters c1 and cmax must be defined. The latter can 
be regarded as the maximum confidence granted by the particle to any performance 
transmitted by another. For each problem, “the right” values can be found only by 
experiment, with the help, however, of two empirical rules, made available after 
many tests. 

 The first rule stipulates that c1 must have an absolute value less than 1. It is 
understood intuitively if one considers what occurs in the course of several 
successive time increments, in the specific case where the particle is and remains 
itself its best informant. We then have pd = xd = gd and, with each increment, 
velocity is simply multiplied by c1. If its absolute value is greater than 1, velocity 
increases unceasingly and convergence is impossible. Note that, in theory, nothing 
prevents this coefficient being negative, the behavior obtained being strongly 
oscillatory, but this is never the case in traditional PSO. So, we will assume it to be 
positive. 

 In practice, this coefficient should be neither too small, which induces a 
premature convergence, nor too large, which, on the contrary, can slow down 
convergence excessively. The authors of the first work on PSO recommended that it 
be equalized to 0.7 or 0.8. 

 The second rule states simply that the parameter cmax should not be too large, a 
value of about 1.5 to 1.7 being regarded as effective in the majority of cases. When 
it was originally stated, this rule did not have a justification, even an intuitive one. It 
was purely experimental. 

 In fact, the recommended values are very close to those deduced later from 
mathematical analyses showing that for a good convergence the values from c1 and 
cmax should not be independently selected [CLE 02, TRE 03, VAN 02]. For example, 
the pairs of values (0.7 1.47) and (0.8 1.62) are indeed correct. The first 
experimenters, James Kennedy and Russel Eberhart, with the possible addition of 
Yuhui Shi [SHI 9a], did good work! The existence of this relation between these two 
parameters will help us later establish performance maps in only two variables: a 
parameter ϕ and the size of the swarm. 

3.1.5. Interval confinement 

During the first experiments of PSO, the test functions used were defined for all 
values. For example, the function: 

( ) 2

1

D

d
d

f x x
=

= ∑  
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(historically called Sphere, but which is in fact a paraboloid) in any point of real 
space RD

 can be calculated. During the evolution of the swarm, it may have 
happened that a particle left the search space as initially defined, but that was of no 
importance, since the value of its position could in fact still be calculated without 
“crashing” the data-processing program. Nevertheless, obviously, that is not always 
the case. For example, in the majority of programming languages and with the 
majority of compilers, the evaluation of a function such as: 

( )
1

D

d
d

f x x
=

= ∑  

returns an error message as soon as one of the coordinates xd is negative. 

More generally, a number of functions have a space of definition that is not 
infinite. Consequently, it was necessary to add very quickly a mechanism to prevent 
a particle leaving the search space. The simplest is the interval confinement. Let us 
always assume, for the sake of simplicity, that the search space is [xmin, xmax]

D
. Then 

this mechanism stipulates that, if a coordinate xd calculated according to equations 
of motion [3.2] leaves the interval [xmin, xmax], one allots to it the nearest value of the 
border point. In practice, therefore, it amounts to replacing the second line of [3.2] 
by: 

( )( )min max, ,d d dx MIN MAX x v x x← +  [3.3] 

However, this simple form, while giving correct results, has a disadvantage. 
Indeed, we are in a scenario where the proper velocity of the particle tends to make 
it leave the search space. Confinement [3.3] certainly brings back the particle to the 
border of the search space, but does not change its velocity. This is calculated again 
and thus in general is modified next time, but it is not uncommon for it to remain 
oriented more or less in the same direction. Thus the particle will tend to cross the 
border again, be brought back to that point by confinement, and so on. In practice, it 
will be as though it “were stuck” to this border. 

That is why one must supplement the mechanism of confinement with a velocity 
modification. One can replace the component that poses a problem by its opposite, 
possibly balanced by a coefficient less than 1, or one can simply cancel it. If 
cancellation is chosen, the complete mechanism is then described by the following 
operations: 

[ ]min max min min

max max

0
,

d

d d d

d d

v
x x x x x x x

x x x x

←⎧
⎪∉ ⇒ < ⇒ ←⎨
⎪ > ⇒ ←⎩

 [3.4] 
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The adaptation is immediate in case the intervals defining the search space are 
different for each dimension. But what is to be retained above all is the very 
principle of confinement, which stipulates that “if a particle tends to leave the search 
space, then bring it back to the nearest point in this space and consequently modify 
its velocity”. We will see in particular that this principle can be used to define 
confinements necessary to problems in non-null granularity (positions with integer 
values, for example) or to problems (typically combinatorial) whose solutions must 
have all coordinates different. 

3.1.6. Proximity distributions 

What is the consequence of introducing random coefficients into  
equations of motion? For a better understanding, let us consider all  
the possible displacements obtained while varying independently c2 and c3 between 0 
and cmax. Let us call p%  the vector whose dth component is: 

( )( )max0, d dalea c p x−  

and g%  the one whose dth component is: 

( )( )max0, d dalea c g x−  

It is easy to see that if one places the origin of p%  (respectively g% ) in x, its end 
then traverses a D-parallelepiped whose two opposite tops are x and cmaxp 
(respectively cmaxg). This D-parallelepiped is called the proximity of p (respectively 
g). It is an example of formalization of what we described in the preceding chapter 
by using the expression “towards . . .”. 

The distribution of the possible points in the proximities of p and g is uniform. 
On the other hand, the distribution of the new possible positions for the particle, 
even if its field is also a hyperparallelepid, is not itself uniform.  
Indeed, for a given dimension d, the random variable whose occurrence is the dth 
component of the new

 
velocity is the sum of two random variables having each one 

a density of constant probability on an interval. To clarify these ideas, let us suppose 
that one has d dp g< and 0dv = . Then the probability density of the sum of these 
two variables has a trapezoidal form. It increases linearly on [ ]max0, dc p , from 0 
to d dp g , preserves this last value in the interval [cmaxpd, cmaxgd] then decreases 
linearly to 0 on the interval [cmaxgd, cmax (pd + gd)]. The resulting distribution thus 
makes it a “truncated pyramid”, whose center is at the point 

( ) ( )( )2,2 22max11max gpcgpc ++ . It is uniform on a rectangle and decreases 
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linearly beyond the edges of this rectangle. Figure 3.1 shows a sample of 1,000 
points in the proximity of p, 1,000 points in that of g and 1,000 next possible 
positions which result from this by linear combination. 

 

 

Figure 3.1. Example of proximities in two dimensions. The proximity of p (the best position 
found up to now by particle x) is a rectangle of which one of the tops is x and the other 

 cmax(p – x) and the distribution of possibilities is uniform there. Similarly for g  
 (the best position found by informants of x). By linear combination, one obtains 

 the next possible positions of the particle. Their envelope is also a rectangle, 
 but the distribution is not uniform there (less dense on the edges). To clarify  
the Figure, the velocity of the particle was assumed to be null and for each  

distribution only a sample of 1,000 points was represented 

Let us emphasize this concept of the distribution of the next possible positions 
or, briefly, the distribution of the possibles. This is the basis of all the algorithms of 
iterative optimization calling for randomness (stochastic). With each time increment, 
certain positions are known and starting from this information, it is a question of 
choosing the next position(s) for it (or them). Whatever the method used to work out 
the answer, the result is always of the same type: a set of candidate positions, each 
one being assigned a probability of being selected. 

This is why it is so important, for any method of this type, to examine carefully 
the distributions obtained with each increment and to ask whether they can be made 
more effective. For PSO, we will see that this step easily induces interesting 
improvements. A contrario, let us quickly mention two rather common errors that 
impoverish the distributions of the possibles. 

Towards p

Towards g

New possible
positions

p 

x

g
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3.2. Two common errors 

The equations of motion [3.2] are sometimes written in vectorial form: 

( )( ) ( )( )1 max max0, 0,v c v alea c p x alea c g x
x x v

⎧ ← + − + −⎪
⎨

← +⎪⎩
 [3.5] 

In this case, in accordance with the definition of the multiplication of a vector by 
a coefficient, it means that all the components, for example vector p – x, are multiplied 
by the same random number. This is an error in the sense that it corresponds to an 
algorithm different from that of PSO, but we can also regard this form as an 
alternative. It should, however, be noted that the best parameter settings for c1 and 
cmax bypass the use of a constriction coefficient (see Chapter 6) and that this 
alternative is then much less effective than the classic form. 

The proximity of p (respectively g) is a simple segment here and the distribution 
of possibles for the next displacement is a D-parallelepiped located “between” p and 
g (these two points are on its surface), which restricts exploration, in particular 
because an entire set of points located close to p (respectively g) has no chance of 
being selected. 

 The other error, or alternative, consists of carrying out a factorization in the first 
equation of motion: 

( )( )1 max0, 2d d d d dv c v alea c p g x← + + −  [3.6] 

or: 

( )1 max0, 2
2

d d
d d d

p g
v c v alea c x

+⎛ ⎞← + −⎜ ⎟
⎝ ⎠

 [3.7] 

In this form, we see that the next position will then be taken randomly according 
to a uniform distribution in a hyperparallelepid whose edge for dimension d is length 

max d dc p g+ and whose center is found by adding to vector x the vector 

( )1 max 2c v c p g+ + . Actually, one could simply describe this as an alternative rather 
than an error, because this distribution is almost as rich as the original. 
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3.3. Principal drawbacks of this formulation 

The repeated experiments using the version of PSO defined by equations [3.2] 
and [3.4] (the version that, for brevity, we will name OEP 0) highlight certain 
insufficiencies or anomalies that can also be seen as ideas for improvements in 
subsequent versions. 

3.3.1. Distribution bias 

We saw that, with each time increment and for each particle, the distribution of 
possibles is non-uniform and of (hyper-)rectangular envelope. In itself, it would not 
be a defect if it corresponded at least to an empirical rule, aiming, for example, to 
favor a certain area of the search space. For example, one might think of searching 
“preferentially” around one of the two best-known positions of the particle (p and g) 
or “around” a point located between p and g, but closer to g than p, etc. 

However, this is not the case. There is no reason why the median point of the 
distribution obtained should be at the center of a “promising” area. Actually, the 
very particular form of this distribution is an artifact resulting only from the simple 
choice of coding of random elements. Since the majority of data-processing 
languages have only the function alea (0,1), one immediately has alea (0, cmax) = cmax 
alea (0,1). However, coding a distribution of different envelope (spherical, for 
example) is appreciably more difficult, at least if the computing time is not to 
increase exponentially with the number of dimensions. We will see examples of this 
later. 

 Moreover, it should be noted that this distribution depends on the coordinate 
system (see Figures 3.2 and 3.3). If by bad luck the point p is on a coordinate axis, 
the D-rectangle of its proximity loses a dimension. For a problem with two 
dimensions, for example, it is reduced to a segment. A simple rotation of the 
coordinate system completely modifies the whole ensemble of next possible 
positions and thus strongly influences the behavior of the particles. Convergence is 
as likely to be accelerated as slowed down, but, again, in an unforeseeable way. 

 This phenomenon is often concealed, because the majority of traditional test 
functions are symmetrical around the origin of the coordinates. 
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Figure 3.2. Distribution of the next possible positions. The upper diagram shows each of the 
two elementary distributions and the lower their combination (sample of 1,000 points) 
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Figure 3.3. Depending on the coordinate system chosen, the distribution of the next possible 
positions can be very variable. Here, a rotation of the coordinate axes was carried out, one of 

the axes practically aligning itself on the vector g − x 

The second bias led to alternatives privileging distributions with a center of 
symmetry (spheres, Gaussian, etc.) or whose form depends only on the respective 
positions x, p, and g (Gaussian “distorted”). To mitigate the first bias at the same 
time, these distributions are placed in a way that is a priori wiser. For example, by 
centering them on the segment p − g and a little closer to g than p, one can hope to 
take advantage of a possible favorable “gradient effect” from p towards g. 
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3.3.2. Explosion and maximum velocity 

If one does not want to subject oneself to a parameter c1 less than 1, to support 
exploration, then it is necessary to face the phenomenon of the “explosion” of the 
swarm. Indeed, roughly speaking, as we saw, with each time increment velocity is 
multiplied by c1. If this coefficient is greater than 1, then it will tend to increase 
more and more. That is why certain authors introduce an additional parameter, in the 
form of a maximum velocity: any velocity tending to exceed it is brought back to it. 
This maximum velocity vmax is a real number, which can be different for each 
dimension. An empirical rule requires that, for a given dimension, one takes it to be 
equal to half the range of possible values for the search space. Any larger value 
would ensure that the particles are made to leave the search space too often. 

For example, if for a dimension d the search space is the interval [0.5], one will 
take a maximum velocity of 2.5 for this dimension. It means that if the first 
calculation of equation [3.2] gives a velocity vd greater than 2.5, one will take it 
instead to equal 2.5. If the values are discrete, for example{ }0,1,...,5 , the greatest 
extent covered by the possible values remains from 0 to 10, but the maximum 
velocity could be selected as being 2 or 3. 

Unfortunately, whoever says “additional parameter” says also “choice of this 
parameter”, which still complicates the task of the user a little, since, in OEP 0, all 
the parameters are up to him. 

3.4. Manual parameter setting 

Table 3.1 recapitulates the various parameters of the model which have to be 
defined and the few empirical rules which could be worked out to guide the choice. 
These rules are very approximate and, for a given problem, we are faced with the 
strong possibility of searching at length before finding a “good” set of parameters. 
The good news, nevertheless, is that PSO is very robust, in the sense that broad 
variations in the parameters do not prevent convergence, even if, of course, it can be 
more or less rapid. 

In this respect, in the majority of the problems, the informant group size is the 
parameter to which the behavior of the swarm is the least sensitive. One can take it 
systematically equal to 3 without much risk. Even if this is not the best value for 
your precise problem, the performances, in general, are not seriously degraded as a 
result. Nevertheless, if you are sure that the function to be minimized does not 
present local minima, you will probably find it beneficial to increase this value, to 
even consider that each particle informs all the others and thus to take it equal to N. 
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Parameter  Title and nature  Empirical rule of choice and comment  

c1  
Self-confidence; real 

number In ]0,1[. Suggestion: 0.7  

cmax  
Confidence in others; 

real number About 1.5. Suggestion: 1.43  

N  Swarm size; integer  From 20 to 40. Suggestion: 20  

K  Group size of informed; 
integer  

From 3 to 5. To N for the simple problems 
without local minima. Suggestion: 3  

vmax  
Maximum velocity; real 

number  

Essential only if c1 is greater than 1. Value about 
half of xmax − xmin. Possibly different  

for each dimension.  

Table 3.1. Parameters of OEP 0. The fifth, maximum velocity, is useful only if one wants to 
force a greater exploration of the search space by balancing velocity by a                        

“self-confidence” greater than 1 

The number of evaluations of the function to be minimized is equal, with each 
time increment, to the number of particles. Consequently, the degradation of the 
performances according to this criterion is at most proportional to the size of the 
swarm. Actually it is often much less, since the increase in the number of particles 
also increases the probability of finding a solution more quickly. That is why the 
recommended values 20 to 40 are very generally satisfactory. 

For the two parameters of confidence, precise values are suggested. As indicated 
previously, they form a pair initially found in experiments but subsequently 
confirmed mathematically. Other values are naturally possible and it is even 
possible, by choosing them judiciously, more or less to induce a given behavior of 
the particles, in particular oscillating or not around a solution [TRE 03, VAN 02].  

3.5. For “amatheurs”: average number of informants 

One supposes that each particle of a swarm of total size N randomly chooses, 
with putting back, K particles to be informed. The probability that a particle is not 
selected is ( )1 1 Kp N= − and the probability that it is selected is 1q p= − . 

Let s be the number of informants of a given particle. The probability that s is 
null is the probability that it is chosen by nobody, i.e. neither by particle 1, nor by 
particle 2 . . . nor by particle N. This probability is thus Np . 

 In the same way, for s to equal 1, it must be chosen by one particle (N 
possibilities) and not chosen by all the others. Its probability is thus 1NNp q− . More 
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generally, for an unspecified value of s between 0 and N, the probability 
is s N s s

NC p q− , where s
NC is the number of combinations of s elements among N. 

  
 Thus, finally, by taking the sum of the possible values weighted according to 

their probability, the average value of the number of informants is: 

( ) ( ) ( )( )
0 0

1 1 1 1 1
sN N K N s Ks N s s s

N N
s s

sC p q sC N N−−

= =
= − − −∑ ∑  

From a graph theory point of view, it is the average number of ancestors by node 
when, in a graph of size N, the arcs are built by randomly taking K downward for 
each node. Figure 3.4 shows, for K = 3, the evolution of this value according to N. 

 

 

 

 

Figure 3.4. Average number of informants by particle when each particle informs K  
others at random, according to the size of the swarm.  

Here K = 3. This number is all the less than K as the swarm is small 

3.6. Summary 

From the basic principles presented in the preceding chapter, we propose a first 
simple formulation, called OEP 0, which specifies the rules of displacement of the 
particles. The information links between particles are randomly selected with each 
iteration. The equations of motion combine linearly, thanks to confidence 
coefficients, vectors of position randomly drawn according to non-uniform 
distributions whose supports are (hyper-)rectangles in the search space. 

 The various parameters (size of the swarm, coefficients, number of informed 
particles chosen at random, etc.) depend entirely upon the user for the moment and 
some semi-empirical rules are given to guide these choices. 

 Certain insufficiencies of this first version are noted here. Highlighting them 
will guide the improvements brought about later on. 
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